Ng SIM, Chan MN. Beyond the formation: unveiling the atmospheric transformation of organosulfates
via heterogeneous OH oxidation.
Chem Commun (Camb) 2023;
59:13919-13938. [PMID:
37933441 DOI:
10.1039/d3cc03700b]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Organosulfates (OSs), characterized with a sulfate ester group (R-OSO3-), are abundant constituents in secondary organic aerosols. Recent laboratory-based investigations have revealed that OSs can undergo efficient chemical transformation through heterogeneous oxidation by hydroxyl radicals (˙OH, interchangeably termed as OH in this article), which freshly derives functionalized and fragmented OSs. The reaction not only contributes to the presence of structurally transformed OSs in the atmosphere of which sources were unidentified, but it also leads to the formation of inorganic sulfates (e.g., SO42-) with profound implication on the form of aerosol sulfur. In this article, we review the current state of knowledge regarding the heterogeneous OH oxidation of OSs based on state-of-the-art designs of experiments, computational approaches, and chemical analytical techniques. Here, we discuss the formation potential of new OSs and SO42-, in light of the influence of diverse OS structures on the relative importance of different reaction pathways. We propose future research directions to advance our mechanistic understanding of these reactions, taking into account aerosol matrix effects, interactions with other atmospheric pollutants, and the incorporation of experimental findings into atmospheric chemical transport models.
Collapse