1
|
Tanwar D, Mahala S, Ahluwalia D, Bhuvanesh N, Joshi H, Kumar U. Nickel Complexes Bearing Quinoline Derived NNS Donor Ligands as Catalytic Activators for N-Alkylation of Anilines with Alcohols. Chem Asian J 2024; 19:e202400557. [PMID: 38993064 DOI: 10.1002/asia.202400557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
Herein, we have reported a new series of NNS-donor ligands coordinated Ni(II) complexes and utilized them as catalytic activator to synthesize N-alkylated amines and 1,2-disubstituted benzimidazoles. The reaction of thiophenol/4-chlorothiophenol/4-methylthiophenol/4-methoxythiophenol with 2-bromo-N-quinolin-8-yl-acetamide in presence of sodium hydroxide in ethanol at 80 °C gave [C9H6N-NH-C(O)-CH2-S-Ar] [Ar=C6H5 (L1); C6H4Cl-4 (L2); C6H4Me-4 (L3) and C6H4-OMe-4 (L4)], respectively. The corresponding reaction of L1-L4 with Ni(OAc)2 in methanol at 80 °C for 3 hours resulted in octahedral nickel complexes [(L1-H)2Ni] (C1), [(L2-H)2Ni] (C2), [(L3-H)2Ni] (C3), and [(L4-H)2Ni] (C4), respectively. All compounds have been characterized by micro and spectroscopic analysis. The molecular structure of complexes C1-C3 has also been determined by single crystal X-ray diffraction data. The utility of complexes C1-C4 were evaluated for the N-alkylation of aniline with benzyl alcohols, and for 1,2-disubstituted benzimidazoles synthesis. The obtained results indicate that complex C1 showed better catalytic activity in both N-alkylation of amines with benzyl alcohols [catalyst loading: 2.0 mol %; Yield up to 92 %], and for 1,2-disubstituted benzimidazoles derivatives [catalyst loading: 2.0 mol %; Yield up to 94 %)]. The mechanistic studies suggested that the reaction works through hydrogen borrowing from benzyl alcohol and its subsequent utilization for in situ reduction of imine. The experimentally observed catalytic reactivity patterns of complexes C1-C4 have found in good agreement with the HOMO-LUMO energy gaps obtained by DFT analysis of corresponding complexes.
Collapse
Affiliation(s)
- Deepika Tanwar
- Catalysis and Bioinorganic Research Lab, Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, 110019, India
- Department of Chemistry, University of Delhi, New Delhi, 110007, India
| | - Suman Mahala
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Deepali Ahluwalia
- Department of Chemistry, S. S. Jain Subodh P.G. (Autonomous) College, Rambagh Circle, Jaipur, Rajasthan, 302007, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas, 77842-3012, USA
| | - Hemant Joshi
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Umesh Kumar
- Catalysis and Bioinorganic Research Lab, Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, 110019, India
| |
Collapse
|
2
|
Mondal S, Chakraborty S, Khanra S, Chakraborty S, Pal S, Brandão P, Paul ND. A Phosphine-Free Air-Stable Mn(II)-Catalyst for Sustainable Synthesis of Quinazolin-4(3 H)-ones, Quinolines, and Quinoxalines in Water. J Org Chem 2024; 89:5250-5265. [PMID: 38554095 DOI: 10.1021/acs.joc.3c02579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
The synthesis, characterization, and catalytic application of a new phosphine-free, well-defined, water-soluble, and air-stable Mn(II)-catalyst [Mn(L)(H2O)2Cl](Cl) ([1]Cl) featuring a 1,10-phenanthroline based tridentate pincer ligand, 2-(1H-pyrazol-1-yl)-1,10-phenanthroline (L), in dehydrogenative functionalization of alcohols to various N-heterocycles such as quinazolin-4(3H)-ones, quinolines, and quinoxalines are reported here. A wide array of multisubstituted quinazolin-4(3H)-ones were prepared in water under air following two pathways via the dehydrogenative coupling of alcohols with 2-aminobenzamides and 2-aminobenzonitriles, respectively. 2-Aminobenzyl alcohol and ketones bearing active methylene group were used as coupling partners for synthesizing quinoline derivatives, and various quinoxaline derivatives were prepared by coupling vicinal diols and 1,2-diamines. In all cases, the reaction proceeded smoothly using our Mn(II)-catalyst [1]Cl in water under air, affording the desired N-heterocycles in satisfactory yields starting from cheap and readily accessible precursors. Gram-scale synthesis of the compounds indicates the industrial relevance of our synthetic strategy. Control experiments were performed to understand and unveil the plausible reaction mechanism.
Collapse
Affiliation(s)
- Sucheta Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Subhankar Khanra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Santana Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Shrestha Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Paula Brandão
- Departamento de Química/CICECO, Instituto de Materiais de Aveiro, Universidade de Aveiro, Aveiro 3810-193, Portugal
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| |
Collapse
|
3
|
Pennamuthiriyan A, Rengan R. Nickel Pincer Complexes Catalyzed Sustainable Synthesis of 3,4-Dihydro-2 H-1,2,4-benzothiadiazine-1,1-dioxides via Acceptorless Dehydrogenative Coupling of Primary Alcohols. J Org Chem 2024; 89:2494-2504. [PMID: 38326039 DOI: 10.1021/acs.joc.3c02508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
We report the atom-economic and sustainable synthesis of biologically important 3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxide (DHBD) derivatives from readily available aromatic primary alcohols and 2-aminobenzenesulfonamide catalyzed by nickel(II)-N∧N∧S pincer-type complexes. The synthesized nickel complexes have been well-studied by elemental and spectroscopic (FT-IR, NMR, and HRMS) analyses. The solid-state molecular structure of complex 2 has been authenticated by a single-crystal X-ray diffraction study. Furthermore, a series of 3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxide derivatives have been synthesized (24 examples) utilizing a 3 mol % Ni(II) catalyst through acceptorless dehydrogenative coupling of benzyl alcohols with benzenesulfonamide. Gratifyingly, the catalytic protocol is highly selective with the yield up to 93% and produces eco-friendly water/hydrogen gas as byproducts. The control experiments and plausible mechanistic investigations indicate that the coupling of the in situ generated aldehyde with benzenesulfonamide leads to the desired product. In addition, a large-scale synthesis of one of the thiadiazine derivatives unveils the synthetic usefulness of the current methodology.
Collapse
Affiliation(s)
- Anandaraj Pennamuthiriyan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| |
Collapse
|
4
|
Vlocskó RB, Xie G, Török B. Green Synthesis of Aromatic Nitrogen-Containing Heterocycles by Catalytic and Non-Traditional Activation Methods. Molecules 2023; 28:molecules28104153. [PMID: 37241894 DOI: 10.3390/molecules28104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Recent advances in the environmentally benign synthesis of aromatic N-heterocycles are reviewed, focusing primarily on the application of catalytic methods and non-traditional activation. This account features two main parts: the preparation of single ring N-heterocycles, and their condensed analogs. Both groups include compounds with one, two and more N-atoms. Due to the large number of protocols, this account focuses on providing representative examples to feature the available methods.
Collapse
Affiliation(s)
- R Bernadett Vlocskó
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Guoshu Xie
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Béla Török
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| |
Collapse
|
5
|
Pal S, Das S, Chakraborty S, Khanra S, Paul ND. Zn(II)-Catalyzed Multicomponent Sustainable Synthesis of Pyridines in Air. J Org Chem 2023; 88:3650-3665. [PMID: 36854027 DOI: 10.1021/acs.joc.2c02867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Herein, we report a Zn(II)-catalyzed solvent-free sustainable synthesis of tri- and tetra-substituted pyridines using alcohols as the primary feedstock and NH4OAc as the nitrogen source. Using a well-defined air-stable Zn(II)-catalyst, 1a, featuring a redox-active tridentate azo-aromatic pincer, 2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline (La), a wide variety of unsymmetrical 2,4,6-substituted pyridines were prepared by three-component coupling of primary and secondary alcohols with NH4OAc. Catalyst 1a is equally compatible with the four-component coupling. Unsymmetrical 2,4,6-substituted pyridines were also prepared via a four-component coupling of a primary alcohol with two different secondary alcohols and NH4OAc. A series of tetra-substituted pyridines were prepared up to 67% yield by coupling primary and secondary alcohols with 1-phenylpropan-1-one or 1,2-diphenylethan-1-one and NH4OAc. The 1a-catalyzed reactions also proceeded efficiently upon replacing the secondary alcohols with the corresponding ketones, producing the desired tri- and tetra-substituted pyridines in higher yields in a shorter reaction time. A few control experiments were performed to unveil the mechanistic aspects, which indicates that the active participation of the aryl-azo ligand during catalysis enables the Zn(II)-complex to act as an efficient catalyst for the present multicomponent reactions. Aerial oxygen acts as an oxidant during the Zn(II)-catalyzed dehydrogenation of alcohols, producing H2O and H2O2 as byproducts.
Collapse
Affiliation(s)
- Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Siuli Das
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhankar Khanra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
6
|
Li A, Li C, Yang T, Yang Z, Liu Y, Li L, Tang K, Zhou C. Electrochemical Synthesis of Benzo[ d]imidazole via Intramolecular C(sp 3)-H Amination. J Org Chem 2023; 88:1928-1935. [PMID: 34918925 DOI: 10.1021/acs.joc.1c01842] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An electrochemical dehydrogenative amination for the synthesis of benzimidazoles was developed. This electrosynthesis method could address the limitations of the C(sp3)-H intramolecular amination synthesis reaction and provide novel access to obtain 1,2-disubstituted benzimidazoles without transition metals and oxidants. Under undivided electrolytic conditions, various benzimidazole derivatives could be synthesized, exhibiting functional group tolerance.
Collapse
Affiliation(s)
- An Li
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation, College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414000, P. R. China
| | - Caohui Li
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation, College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414000, P. R. China
| | - Tao Yang
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation, College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414000, P. R. China
| | - Zan Yang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yu Liu
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation, College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414000, P. R. China
| | - LiJun Li
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation, College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414000, P. R. China
| | - KeWen Tang
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation, College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414000, P. R. China
| | - Congshan Zhou
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation, College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414000, P. R. China
| |
Collapse
|
7
|
Donthireddy SNR, Siddique M, Rit A. N-Heterocyclic Carbene-Supported Nickel-Catalyzed Selective (Un)Symmetrical N-Alkylation of Aromatic Diamines with Alcohols. J Org Chem 2023; 88:1135-1146. [PMID: 36603160 DOI: 10.1021/acs.joc.2c02639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The "borrowing hydrogen" (BH) approach for the N-alkylation of phenylenediamines using alcohols as coupling partners is highly challenging due to the selectivity issue of the generated products. Furthermore, the development of base-metal systems that can potentially substitute precious metals with competitive activity is a major challenge in BH catalysis. We present herein an efficient protocol for the N,N'-di-alkylation of aromatic diamines using an in situ-generated Ni-NHC complex from NiCl2 and the ligand L1, which gave access to a wide range of N,N'-di-alkylated orthophenylene diamines (rather than the generally observed benzimidazole derivatives), meta- and para-phenylene diamines along with 2,6-diamino pyridine derivatives in good to excellent yields. Moreover, the catalyst system was also successful in the derivatization of a clinically important drug molecule, Dapsone. Notably, the present protocol could be applied effectively to synthesize unsymmetrically substituted N,N'-di-alkylated diamines via sequential alkylation and is the first report in the base-metal system to the best of our knowledge. Diverse control experiments including the deuterium incorporation studies suggest that the present protocol proceeds via a BH sequence.
Collapse
Affiliation(s)
- S N R Donthireddy
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Misba Siddique
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
8
|
Anandaraj P, Ramesh R, Malecki JG. Direct Synthesis of Benzimidazoles by Pd(II) N^N^S-Pincer Type Complexes via Acceptorless Dehydrogenative Coupling of Alcohols with Diamines. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Adhikari A, Bhakta S, Ghosh T. Microwave-assisted synthesis of bioactive heterocycles: An overview. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Nakayama T, Harada S, Kikkawa S, Hikawa H, Azumaya I. Palladium‐Catalyzed Dehydrogenative Synthesis of Imidazoquinolines in Water. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Taku Nakayama
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Shogo Harada
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Shoko Kikkawa
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Hidemasa Hikawa
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Isao Azumaya
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| |
Collapse
|
11
|
Step- and atom-economical synthesis of 2-aryl benzimidazoles via the sulfur-mediated redox condensation between o-nitroanilines and aryl methanols. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Das S, Mondal R, Guin AK, Paul ND. Ligand centered redox enabled sustainable synthesis of triazines and pyrimidines using a zinc-stabilized azo-anion radical catalyst. Org Biomol Chem 2022; 20:3105-3117. [PMID: 35088804 DOI: 10.1039/d1ob02428k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein, we report ligand-centered redox controlled Zn(II)-catalyzed multicomponent approaches for synthesizing pyrimidines and triazines. Taking advantage of the ligand-centered redox events and using a well-defined Zn(II)-catalyst (1a) bearing (E)-2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline (L1a) as the redox-active ligand, a wide variety of substituted pyrimidines and triazines were prepared via dehydrogenative alcohol functionalization reactions. Pyrimidines were prepared via two pathways: (i) dehydrogenative coupling of primary and secondary alcohols with amidines and (ii) dehydrogenative coupling of primary alcohols with alkynes and amidines. Triazines were prepared via dehydrogenative coupling of alcohols and amidines. Catalyst 1a is well tolerant to a wide range of substrates yielding the desired pyrimidines and triazines in moderate to good isolated yields. A series of control reactions were performed to predict the plausible mechanism, suggesting that the active participation of the ligand-centered redox events enables the Zn(II)-complex 1a to act as an efficient catalyst for synthesizing these N-heterocycles. Electron transfer processes occur at the azo-aromatic ligand throughout the catalytic reaction, and the Zn(II)-center serves only as a template.
Collapse
Affiliation(s)
- Siuli Das
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
| | - Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
| |
Collapse
|
13
|
Kumar V, Dhawan S, Bala R, Girase PS, Singh P, Karpoormath R. Metal-free direct annulation of 2-aminophenols and 2-aminothiophenols with unactivated amides through transamidation: Access to polysubstituted benzoxazole and benzothiazole derivatives. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Mondal R, Guin AK, Chakraborty S, Paul ND. Iron-Catalyzed Metal–Ligand Cooperative Approach toward Sustainable Synthesis of Azines and N-Acylhydrazones in Air. J Org Chem 2022; 87:2921-2934. [DOI: 10.1021/acs.joc.1c02787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D. Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
15
|
Mondal R, Guin AK, Pal S, Mondal S, Paul ND. Sustainable synthesis of pyrazoles using alcohols as the primary feedstock by an iron catalyzed tandem C–C and C–N coupling approach. Org Chem Front 2022. [DOI: 10.1039/d2qo01196d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report two new efficient iron-catalyzed synthetic strategies for multicomponent synthesis of tri-substituted pyrazoles using biomass-derived alcohols as the primary feedstock.
Collapse
Affiliation(s)
- Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Sucheta Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D. Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
16
|
Aboonajmi J, Panahi F, Hosseini MA, Aberi M, Sharghi H. Iodine-catalyzed synthesis of benzoxazoles using catechols, ammonium acetate, and alkenes/alkynes/ketones via C–C and C–O bond cleavage. RSC Adv 2022; 12:20968-20972. [PMID: 35919129 PMCID: PMC9302334 DOI: 10.1039/d2ra03340b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
An efficient metal-free synthesis strategy of benzoxazoles was developed via coupling catechols, ammonium acetate, and alkenes/alkynes/ketones. The developed methodology represents an operationally simple, one-pot and large-scale procedure for the preparation of benzoxazole derivatives using molecular iodine as the catalyst. A metal-free one-pot multi-component method for the efficient synthesis of 2-aryl benzoxazoles via coupling of catechols, ammonium acetate and alkenes/alkynes/ketones using an I2–DMSO catalyst system is illustrated.![]()
Collapse
Affiliation(s)
- Jasem Aboonajmi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Farhad Panahi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Mina Aali Hosseini
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Mahdi Aberi
- Department of Chemical and Materials Engineering, Faculty of Shahid Rajaee, Technical and Vocational University (TVU), Shiraz Branch, Shiraz, Iran
| | - Hashem Sharghi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| |
Collapse
|
17
|
Mondal R, Chakraborty G, Guin AK, Pal S, Paul ND. Iron catalyzed metal-ligand cooperative approaches towards sustainable synthesis of quinolines and quinazolin-4(3H)-ones. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|