1
|
Rana P, Dixit R, Sharma S, Dutta S, Yadav S, Arora B, Kaushik B, Gawande MB, Sharma RK. Preparation and characterization of the h-BN/Fe 3O 4/APTES-AMF/Cu II nanocomposite as a new and efficient catalyst for the one-pot three-component synthesis of 2-amino-4-aryl(or heteroaryl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4 H-chromene-3-carbonitriles. NANOSCALE 2023; 15:3482-3495. [PMID: 36723031 DOI: 10.1039/d2nr05852a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The intriguing features of surface-engineered hexagonal two-dimensional boron nitride (h-BN) nanostructures have captivated the immense interest of researchers working in the arena of materials science. Inspired by striking attributes exhibited by h-BN nanosheets as the support material, we devoted our efforts towards synthesizing a novel magnetically retrievable h-BN/Fe3O4/APTES-AMF/CuII catalytic system, which was then comprehensively characterized using various techniques including SEM, TEM, EDX, SEM-based elemental mapping, ED-XRF, AAS, XRD, FT-IR, VSM, XPS, TGA, and BET. Further, the catalytic potential of h-BN/Fe3O4/APTES-AMF/CuII nanocomposites was investigated in the one-pot multicomponent coupling reaction to gain access to a library of biologically active 2-amino-4-aryl(or heteroaryl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles under ambient conditions. In addition, the use of green solvent, facile magnetic recoverability, and reusability of up to six successive runs made this protocol environmentally benign and economical. This work throws light on the development of covalently functionalized 2D-BN nanostructure-based copper catalysts and establishes its significance in furnishing industrially demanding products that would pave the way towards sustainable chemistry.
Collapse
Affiliation(s)
- Pooja Rana
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Ranjana Dixit
- Department of Chemistry, Ramjas College, University of Delhi, New Delhi-110007, India
| | - Shivani Sharma
- Department of Chemistry, Ramjas College, University of Delhi, New Delhi-110007, India
| | - Sriparna Dutta
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Sneha Yadav
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Bhavya Arora
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Bhawna Kaushik
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna, 431213, Maharashtra, India.
| | - Rakesh K Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| |
Collapse
|
2
|
Iacopini D, Vančo J, Di Pietro S, Bordoni V, Zacchini S, Marchetti F, Dvořák Z, Malina T, Biancalana L, Trávníček Z, Di Bussolo V. New glycoconjugation strategies for Ruthenium(II) arene complexes via phosphane ligands and assessment of their antiproliferative activity. Bioorg Chem 2022; 126:105901. [DOI: 10.1016/j.bioorg.2022.105901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022]
|