1
|
Tyagi A, Gautam H, Tripathi K, Hazra CK. Nondirected Ortho C-H Arylation for One-Pot Synthesis of Biaryl Scaffolds via In Situ Generated Mixed Acetal. J Org Chem 2025; 90:124-137. [PMID: 39665651 DOI: 10.1021/acs.joc.4c01984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Herein, we introduce a mild and efficient method for synthesizing aniline biaryls and unsymmetrical phenol biaryls through iodine-catalyzed coupling of quinone imine ketals (QIKs)/quinonemonoacetals (QMAs) and β-naphthols. This approach allows for the unusual formation of ortho-substituted anilines and phenols, valuable in pharmaceuticals and advanced materials but typically difficult to produce. Our method achieves high ortho-selectivity without needing transition metals or external/internal templates. The process involves a [3,3] sigmatropic rearrangement of the in situ generated mixed acetal, which is the key intermediate. Notable features include scalability, broad functional group tolerance, and late-stage derivatization of natural products using a cost-effective, air-tolerant catalytic system, eliminating the need for hazardous catalysts.
Collapse
Affiliation(s)
- Aparna Tyagi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Himanshu Gautam
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Khyati Tripathi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Chinmoy K Hazra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
2
|
Li B, Liu BX, Rao W, Shen SS, Sheng D, Wang SY. Copper-Catalyzed Chemoselective Coupling of N-Dithiophthalimides and Alkyl Halides: Synthesis of Unsymmetrical Disulfides and Sulfides. Org Lett 2024; 26:3634-3639. [PMID: 38660998 DOI: 10.1021/acs.orglett.4c01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In this paper, we report an unprecedented copper-catalyzed disulfides or sulfides coupling reaction involving unactivated alkyl halides and N-dithiophthalimides. This reaction can be conducted under mild conditions using low-cost metal catalysts and exhibits high chemical selectivity and functional group compatibility, enabling the efficient assembly of various sulfides and disulfides.
Collapse
Affiliation(s)
- Bin Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Bo-Xi Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Daopeng Sheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Yu Y, Chen J, Huang M, Jiang Y, Zhou X, Wang J, Li J, Cao H. Transition-Metal-Free Disulfuration of Amides with Trisulfide Dioxides via Formation of Unaccessible S-S-N Bonds. J Org Chem 2024; 89:3590-3596. [PMID: 38364441 DOI: 10.1021/acs.joc.3c02497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Under transition-metal-free conditions, trisulfide dioxides were used as disulfurating reagents to react with a wide range of amides, affording various substituted N-disulfanyl amides in good yields. Furthermore, the gram-scale experiment has confirmed the practicability of this approach.
Collapse
Affiliation(s)
- Yue Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
- Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan, 528437, P. R. China
| | - Jianxin Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Mingzhou Huang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yuhao Jiang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Xianhang Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Jinsong Wang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Jiaxin Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
- Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan, 528437, P. R. China
| |
Collapse
|
4
|
Jiang YF, Zhu WC, Liu XY, Tian SY, Han JH, Rao W, Shen SS, Sheng D, Wang SY. Synthesis of 1,3-Dibenzenesulfonylpolysulfane (DBSPS) and Its Application in the Preparation of Aryl Thiosulfonates from Boronic Acids. Org Lett 2023; 25:1776-1781. [PMID: 36867002 DOI: 10.1021/acs.orglett.3c00526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Herein, we provide a novel method for the synthesis of 1,3-dibenzenesulfonylpolysulfane (DBSPS), which further reacts with boronic acids to afford thiosulfonates. Commercially available boron compounds greatly expanded the range of thiosulfonates. Experimental and theoretical mechanistic investigations suggested that DBSPS could provide both thiosulfone fragments and dithiosulfone fragments, but the generated aryl dithiosulfonates were unstable and decomposed into thiosulfonates.
Collapse
Affiliation(s)
- Yi-Fan Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Wei-Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xin-Yu Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Shi-Yin Tian
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jia-Hui Han
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99, Xuefu Road, Huqiu District, Suzhou 215009, P. R. China
| | - Daopeng Sheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Liu H, Gong ZR, Lin ML, Luo W, Xu YJ, Dong L. C-O Coupling/[4+2] Cycloaddition Tandem Reactions via Oxidative Dearomatization of BINOLs: Access to Bridged Polycyclic Compounds. J Org Chem 2023; 88:3916-3926. [PMID: 36849248 DOI: 10.1021/acs.joc.2c02817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Intramolecular C-H activation/C-O coupling, dearomatization, and [4+2] cycloaddition of BINOL units have been well developed in a one-pot approach with maleimide derivatives as the dienophiles. This tandem catalytic system generates a variety of functionalized bridged polycyclic products in a step-economical manner, which greatly enriches the modification methods and strategies for the BINOL skeletons.
Collapse
Affiliation(s)
- Hao Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China.,Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zi-Rong Gong
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Meng-Ling Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wen Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yan-Jun Xu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Lao T, Chen J, Zhou X, Zhang Z, Cao G, Su Z, Yu Y, Cao H. Visible-light-induced synthesis of N-disulfanyl indoles, pyrroles or carbazoles via the construction of stable S-S-N bonds. Chem Commun (Camb) 2023; 59:458-461. [PMID: 36519391 DOI: 10.1039/d2cc04616d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A simple and efficient visible-light-induced approach for the formation of stable S-S-N bonds has been developed. Through these photocatalytic reactions, a series of N-disulfanyl indoles, pyrroles and carbazoles were afforded with good to excellent yields. Moreover, the gram-scale experiment has confirmed the practicability of this approach.
Collapse
Affiliation(s)
- Tianfeng Lao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Jianxin Chen
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Xianhang Zhou
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Ziwu Zhang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Gao Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Zhengquan Su
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Yue Yu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China. .,Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China. .,Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, China
| |
Collapse
|
7
|
Liu J, Chen J, Liu T, Liu J, Zeng Y. Recent Advances in the Reactions of β-Naphthol at α-Position. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202207015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
8
|
Wu S, Hu D, Wan X, Zhao J, He Q, Su Z, Cao H. Photocatalytic C-H Disulfuration for the Preparation of Indolizine-3-disulfides. J Org Chem 2022; 87:16297-16306. [PMID: 36417299 DOI: 10.1021/acs.joc.2c01871] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A photocatalytic C-H disulfuration of indolizines was developed, giving an approach to a wide variety of indolizine-3-disulfides with good yields. Trisulfide dioxides were explored as a high-efficient disulfuration reagent. This disulfuration reaction could be scaled up to grams. Mechanistic studies support a photoinduced pathway involving the generation of indolizine cationic radicals. A bulky alkyl substituent on terminal sulfur of trisulfide dioxide A was necessary for selective formation of disulfide over monosulfide.
Collapse
Affiliation(s)
- Songxin Wu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Dangzhong Hu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Xuegui Wan
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Jiaji Zhao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qiuxing He
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Zhengquan Su
- Guangdong Engineering Research Centre of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Centre of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China.,Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, China
| |
Collapse
|
9
|
Meng X, Guo W, Nan G, Li M. Synthesis of pyrrole disulfides via umpolung of β-ketothioamides. Org Biomol Chem 2022; 20:7609-7612. [PMID: 36156622 DOI: 10.1039/d2ob01506d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Na2CO3-promoted reaction of β-ketothioamides (KTAs) and cyanoacetates was developed for the synthesis of pyrrole disulfides using air as a green oxidant. This protocol features a broad substrate scope and mild reaction conditions. Preliminary mechanistic studies indicate that the reaction involves a tandem unusual umpolung of KTAs, N-cyclization, tautomerization and oxidative coupling process.
Collapse
Affiliation(s)
- Xiangrui Meng
- Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, P. R. China.
| | - Weisi Guo
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Guangming Nan
- Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, P. R. China.
| | - Ming Li
- Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, P. R. China. .,College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| |
Collapse
|
10
|
Baker RJ, Ching J, Hou TR, Franzoni I, Lautens M. Dearomative Cyclopropanation of Naphthols via Cyclopropene Ring‐Opening. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rachel J. Baker
- Davenport Laboratories Department of Chemistry University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Justin Ching
- Davenport Laboratories Department of Chemistry University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Teh Ren Hou
- Davenport Laboratories Department of Chemistry University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Ivan Franzoni
- NuChem Sciences Inc. 350 rue Cohen, Suite 201 Saint-Laurent Quebec H4R 2N6 Canada
| | - Mark Lautens
- Davenport Laboratories Department of Chemistry University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
11
|
Fan YH, Guan XY, Li WP, Lin CZ, Bing DX, Sun MZ, Cheng G, Cao J, Chen JJ, Deng QH. Synthesis of amidines via iron-catalyzed dearomative amination of β-naphthols with oxadiazolones. Org Chem Front 2022. [DOI: 10.1039/d1qo01687c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and convenient method for the synthesis of amidines bearing a β-naphthalenone moiety catalyzed by cheap iron(ii) chloride is presented by employing oxadiazolones as the nitrene precursors.
Collapse
Affiliation(s)
- Yan-Hui Fan
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Xiao-Yu Guan
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Wen-Pei Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Cheng-Zhou Lin
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - De-Xian Bing
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Mei-Zhi Sun
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Guo Cheng
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Jing Cao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Jun-Jie Chen
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Qing-Hai Deng
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
12
|
Baker RJ, Ching J, Hou TR, Franzoni I, Lautens M. Dearomative Cyclopropanation of Naphthols via Cyclopropene Ring-Opening. Angew Chem Int Ed Engl 2021; 61:e202116171. [PMID: 34939302 DOI: 10.1002/anie.202116171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 11/07/2022]
Abstract
The dearomatization of 2-naphthols represents a simple method for the construction of complex 3D structures from simple planar starting materials. We describe a cyclopropanation of 2-naphthols that proceeds via cyclopropene ring-opening using rhodium and acid catalysis under mild conditions. The vinyl cyclopropane molecules were formed with high chemoselectivity and scalability, which could be further functionalized at different sites. Both computational and experimental evidence were used to elucidate the reaction mechanism.
Collapse
Affiliation(s)
| | | | | | | | - Mark Lautens
- University of Toronto, Dept. of Chemistry, 80 St. George Street, M5S 3H6, Toronto, CANADA
| |
Collapse
|