1
|
Zsigulics B, Angyal P, Mészáros BB, Daru J, Varga S, Soós T. Bioinspired Synthesis of (-)-Hunterine A: Deciphering the Key Step in the Biogenetic Pathway. Chemistry 2024:e202404501. [PMID: 39665524 DOI: 10.1002/chem.202404501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
A concise, bioinspired, and enantioselective synthesis of (-)-hunterine A, an odd 6/7/6/6/5 pentacyclic natural product, is described. The key step in the synthesis of this complex structure is an interim-template directed 6-exo selective epoxide ring-opening reaction, which is interwoven with a hydrolysis step of the indolenine hemiaminal template to create the unusual 7-membered azepine bridge motif. Our work not only refines the previously proposed biogenetic pathway, but also reveals the possible stereochemical prerequisite of the unique skeletal rearrangement, which provides a vantage point for understanding how (-)-hunterine A is likely to be generated in nature.
Collapse
Affiliation(s)
- Bálint Zsigulics
- Organocatalysis Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, 2. Magyar tudósok krt., H-1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, 1/a Pázmány Péter sétány, H-1117, Budapest, Hungary
| | - Péter Angyal
- Organocatalysis Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, 2. Magyar tudósok krt., H-1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, 1/a Pázmány Péter sétány, H-1117, Budapest, Hungary
| | - Bence Balázs Mészáros
- Organocatalysis Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, 2. Magyar tudósok krt., H-1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, 1/a Pázmány Péter sétány, H-1117, Budapest, Hungary
- Department of Chemistry, Eötvös Loránd University, 1/a Pázmány Péter sétány, H-1117, Budapest, Hungary
| | - János Daru
- Department of Chemistry, Eötvös Loránd University, 1/a Pázmány Péter sétány, H-1117, Budapest, Hungary
| | - Szilárd Varga
- Organocatalysis Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, 2. Magyar tudósok krt., H-1117, Budapest, Hungary
| | - Tibor Soós
- Organocatalysis Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, 2. Magyar tudósok krt., H-1117, Budapest, Hungary
| |
Collapse
|
2
|
Wu K, Kang K, Liu D, Zhang C, Wang X, Zhang M, Li Q. Gold-catalyzed endo-selective Ring-opening of Epoxides and its Application in Construction of Poly-ethers. Chemistry 2024; 30:e202400234. [PMID: 38273816 DOI: 10.1002/chem.202400234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 01/27/2024]
Abstract
Tetrahydropyran and tetrahydropyran-fused poly-ethers scaffolds are found in many classes of natural products and medicinally relevant small molecules. Here we describe a catalytic system for 6-endo selective ring-opening of epoxides by Au(I) or Au(III) catalyst that provides rapid access to various tetrahydropyran-derived motifs. It also could efficiently construct the subunits of marine ladder-like poly-ethers through emulating the Nakanishi's hypothesis on the biosynthesis of these toxins. The synthetic utility of this method is also demonstrated in the preparation of the tricyclic core of tetrahydropyran-containing macrolide natural products lituarines A-C.
Collapse
Affiliation(s)
- Kehuan Wu
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
| | - Kaiwen Kang
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chiyue Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xinyu Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Miaocheng Zhang
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Bowen JI, Zhong X, Gao K, Reed B, Crump MP, Wang L, Willis CL. Combining total synthesis and genetic engineering to probe dihydropyran formation in ambruticin biosynthesis. Chem Sci 2024; 15:5319-5326. [PMID: 38577359 PMCID: PMC10988584 DOI: 10.1039/d4sc00720d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 04/06/2024] Open
Abstract
The ambruticins are a family of potent antifungal polyketide derived natural products isolated from the myxobacterium Sorangium cellulosum. Their unusual structures include a trisubstituted cyclopropyl group and two oxygen heterocycles, a tetrahydropyran (THP) and dihydropyran (DHP). Herein we report a flexible modular approach for the total synthesis of ambruticins which is used to prepare ambruticins F and S as well as in the first total synthesis of 20,21-dihydroambruticin F. The flexible strategy unites 3 fragments via Julia-Kocienski olefinations and provides important standards for investigation of dihydropyran formation in ambruticin biosynthesis. Cultures of wild-type S. cellulosum So ce10 produce mainly ambruticin S and the VS series of metabolites. An efficient electroporation method enabled gene knockout experiments which revealed that the ΔambP-S mutant of S. cellulosum accumulated the bisTHP polyketide 20,21-dihydroambruticin F. In contrast, the ΔambN-S mutant gave ambruticin F with the 20,21-alkene as the major metabolite confirming that AmbP and AmbO (a Rieske enzyme and flavin-dependent monooxygenase respectively) are implicated in 20,21-alkene formation. The results of feeding studies to a Sorangium strain containing only ambP and ambO are in accord with formation of the 20,21-alkene occurring prior to generation of the C3 to C7 dihydroxylated tetrahydropyran in ambruticin biosynthesis.
Collapse
Affiliation(s)
- James I Bowen
- School of Chemistry, University of Bristol Bristol BS8 1TS UK
| | - Xiaotong Zhong
- Institute of Microbiology, Chinese Academy of Sciences No. 1 Beichen West Road, Chaoyang District Beijing 100101 China
| | - Kaining Gao
- Institute of Microbiology, Chinese Academy of Sciences No. 1 Beichen West Road, Chaoyang District Beijing 100101 China
- School of Life Sciences, Yunnan University Kunming 650500 China
| | - Benjamin Reed
- School of Chemistry, University of Bristol Bristol BS8 1TS UK
| | - Matthew P Crump
- School of Chemistry, University of Bristol Bristol BS8 1TS UK
| | - Luoyi Wang
- Institute of Microbiology, Chinese Academy of Sciences No. 1 Beichen West Road, Chaoyang District Beijing 100101 China
| | | |
Collapse
|
4
|
Chouhan R, Bhattacharyya H, Das SK. Diastereocontrolled Construction of Spiroindolenines via Hexafluoroisopropanol-Promoted Dearomative Epoxide-Indole Cyclization. Org Lett 2024; 26:1088-1093. [PMID: 38271293 DOI: 10.1021/acs.orglett.3c04361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Herein, we report the discovery of the ipso-selective, dearomatizing spirocyclization of indole-tethered epoxides as a fundamentally new approach for constructing spiroindolenines equipped with three contiguous stereogenic centers under complete diastereocontrol (dr >99:1) and in high yields. Promoted by hexafluoroisopropanol, the protocol features a broad substrate scope, easy scale-up, and versatile transformations of the synthesized spiroindolenines.
Collapse
Affiliation(s)
- Raju Chouhan
- Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Hemanga Bhattacharyya
- Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Sajal Kumar Das
- Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| |
Collapse
|
5
|
Kim MC, Winter JM, Cullum R, Smith AJ, Fenical W. Expanding the Utility of Bioinformatic Data for the Full Stereostructural Assignments of Marinolides A and B, 24- and 26-Membered Macrolactones Produced by a Chemically Exceptional Marine-Derived Bacterium. Mar Drugs 2023; 21:367. [PMID: 37367692 DOI: 10.3390/md21060367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Marinolides A and B, two new 24- and 26-membered bacterial macrolactones, were isolated from the marine-derived actinobacterium AJS-327 and their stereostructures initially assigned by bioinformatic data analysis. Macrolactones typically possess complex stereochemistry, the assignments of which have been one of the most difficult undertakings in natural products chemistry, and in most cases, the use of X-ray diffraction methods and total synthesis have been the major methods of assigning their absolute configurations. More recently, however, it has become apparent that the integration of bioinformatic data is growing in utility to assign absolute configurations. Genome mining and bioinformatic analysis identified the 97 kb mld biosynthetic cluster harboring seven type I polyketide synthases. A detailed bioinformatic investigation of the ketoreductase and enoylreductase domains within the multimodular polyketide synthases, coupled with NMR and X-ray diffraction data, allowed for the absolute configurations of marinolides A and B to be determined. While using bioinformatics to assign the relative and absolute configurations of natural products has high potential, this method must be coupled with full NMR-based analysis to both confirm bioinformatic assignments as well as any additional modifications that occur during biosynthesis.
Collapse
Affiliation(s)
- Min Cheol Kim
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, Skaggs School of Pharmacy and Pharmaceutical Sciences, Moores Comprehensive Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA
| | - Jaclyn M Winter
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Reiko Cullum
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, Skaggs School of Pharmacy and Pharmaceutical Sciences, Moores Comprehensive Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA
| | - Alexander J Smith
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, Skaggs School of Pharmacy and Pharmaceutical Sciences, Moores Comprehensive Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, Skaggs School of Pharmacy and Pharmaceutical Sciences, Moores Comprehensive Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA
| |
Collapse
|
6
|
Das AJ, Das SK. Base-Mediated, Chemo- and Regioselective (4+2) Annulation of Indole-2-carboxamides with 2,3-Epoxy Tosylates toward 1,2-Fused Indoles. J Org Chem 2023. [PMID: 37289967 DOI: 10.1021/acs.joc.3c00813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Base-mediated [4+2] annulation of indole-2-carboxamides with 2,3-epoxy tosylates has been explored. The protocol delivers 3-substituted pyrazino[1,2-a]indol-1-ones in high yields in diastereoselective fashion, and neither 4-substituted pyrazino[1,2-a]indol-1-ones nor tetrahydro-1H-[1,4]diazepino[1,2-a]indol-1-ones are generated, irrespective of whether the distal epoxide C3 substituent is alkyl or aryl, or the epoxide is cis- or trans-configured. This reaction proceeds in one pot via N-alkylation of the indole scaffold with 2,3-epoxy tosylates, concomitantly followed by 6-exo-selective epoxide-opening cyclization. Notably, the process is chemo- and regioselective with respect to both the starting materials. To our knowledge, the process represents the first successful example of one-pot annulation of indole-based diheteronucleophiles with epoxide-based dielectrophiles.
Collapse
Affiliation(s)
- Arup Jyoti Das
- Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Sajal Kumar Das
- Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| |
Collapse
|
7
|
Gutiérrez López MÁ, Tan ML, Frontera A, Matile S. The Origin of Anion-π Autocatalysis. JACS AU 2023; 3:1039-1051. [PMID: 37124310 PMCID: PMC10131205 DOI: 10.1021/jacsau.2c00656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 05/03/2023]
Abstract
The autocatalysis of epoxide-opening ether cyclizations on the aromatic surface of anion-π catalysts stands out as a leading example of emergent properties expected from the integration of unorthodox interactions into catalysis. A working hypothesis was proposed early on, but the mechanism of anion-π autocatalysis has never been elucidated. Here, we show that anion-π autocatalysis is almost independent of peripheral crowding in substrate and product. Inaccessible asymmetric anion-π autocatalysis and sometimes erratic reproducibility further support that the origin of anion-π autocatalysis is more complex than originally assumed. The apparent long-distance communication without physical contact calls for the inclusion of water between substrate and product on the catalytic aromatic surface. Efficient anion-π autocatalysis around equimolar amounts but poor activity in dry solvents and with excess water indicate that this inclusion of water requires high precision. Computational models suggest that two water molecules transmit dual substrate activation by the product and serve as proton shuttles along antiparallel but decoupled hydrogen-bonded chains to delocalize and stabilize evolving charge density in the transition state by "anion-π double bonds". This new transition-state model of anion-π autocatalysis provides a plausible mechanism that explains experimental results and brings anion-π catalysis to an unprecedented level of sophistication.
Collapse
Affiliation(s)
- M. Ángeles Gutiérrez López
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
- National
Centre of Competence in Research (NCCR) Molecular Systems Engineering
(MSE), CH-4002 Basel, Switzerland
| | - Mei-Ling Tan
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
- National
Centre of Competence in Research (NCCR) Molecular Systems Engineering
(MSE), CH-4002 Basel, Switzerland
| | - Antonio Frontera
- Departament
de Química, Universitat de les Illes
Balears, SP-07122 Palma de Mallorca, Spain
| | - Stefan Matile
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
- National
Centre of Competence in Research (NCCR) Molecular Systems Engineering
(MSE), CH-4002 Basel, Switzerland
| |
Collapse
|
8
|
Bora SK, Shit S, Sahu AK, Saikia AK. Diastereoselective Synthesis of 2,6-Disubstituted Tetrahydropyranones via Prins Cyclization of 3-Bromobut-3-en-1-ols and Aldehydes. J Org Chem 2023. [PMID: 36811615 DOI: 10.1021/acs.joc.2c02715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Tetrahydropyranones are synthesized from 3-bromobut-3-en-1-ols and aldehydes in good yields with excellent diastereoselectivity at -35 °C. The reaction involves an initial formation of a most stable six-membered chairlike tetrahydropyranyl carbocation followed by nucleophilic attack of the hydroxyl group and subsequent elimination of HBr to give tetrahydropyranone. The carbonyl moiety of the tetrahydropyranone is converted to enol ether and esters using Wittig reaction. It is also transformed into 4-hydroxy-2,6-disubstituted tetrahydropyran with 2,4- and 4,6-cis configuration by lithium aluminum hydride in up to 96% diastereoselectivity. Furthermore, the methodology is extended toward the synthesis of novel anticancer aminoguanidine compounds.
Collapse
Affiliation(s)
- Surjya Kumar Bora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sudip Shit
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Archana Kumari Sahu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Anil K Saikia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
9
|
Ran LY, Ding X, Yan XP, Zhang CP. Divergent dehydroxyfluorination and carbonation of alcohols with trifluoromethyl trifluoromethanesulfonate. Org Biomol Chem 2023; 21:1235-1241. [PMID: 36633208 DOI: 10.1039/d2ob02028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Preparation of alkyl fluorides and carbonates via divergent dehydroxyfluorination and carbonation of alcohols with trifluoromethyl trifluoromethanesulfonate (CF3SO2OCF3) is described. The reactions performed with BTMG in THF provided alkyl fluorides in good yields, whereas those of two different alcohols with Et3N in DCM formed asymmetric carbonates in moderate to excellent yields. CF3SO2OCF3 was demonstrated to be either a "F" or a "CO" reagent in the reactions by changing the base, allowing the selective construction of alkyl fluorides and carbonates from the corresponding alcohols with high efficiency. Notably, the fluorine-containing asymmetric carbonates that are difficult to synthesize by other methods were comprehensively prepared by this method, which would have great application potential in both academic and industrial fields.
Collapse
Affiliation(s)
- Long-Yu Ran
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Xue Ding
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Xue-Ping Yan
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Cheng-Pan Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
10
|
Almendros P, Esteban P, Herrera F, San Martín D, Luna A. Regioselectivity Switch Based on the Stoichiometry: Stereoselective Synthesis of Trisubstituted Vinyl Epoxides by Cu‐Catalyzed 3‐exo‐trig Cyclization of α‐Allenols. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Andler O, Kazmaier U. Stereoselective Synthesis of a Protected Side Chain of Meliponamycin A. Org Lett 2022; 24:2541-2545. [PMID: 35343704 DOI: 10.1021/acs.orglett.2c00701] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Matteson homologation was found to be a versatile tool for the construction of the linear polyketide side chain of meliponamycin and related compounds in only four steps. The ester dienolate version of this reaction allowed the introduction of the unsaturated ester moiety in a highly stereoselective fashion. Boronate oxidation/deoxygenation and Sharpless dihydroxylation are additional key steps in the stereoselective construction of this highly functionalized tetrahydropyran ring system, which is characteristic of this substance class.
Collapse
Affiliation(s)
- Oliver Andler
- Organic Chemistry I, Saarland University, Campus Building C4.2, D-66123 Saarbrücken, Germany
| | - Uli Kazmaier
- Organic Chemistry I, Saarland University, Campus Building C4.2, D-66123 Saarbrücken, Germany.,Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus Building C8.1, D-66123 Saarbrücken, Germany
| |
Collapse
|