1
|
Su J, Wang X, Li S, Wu X, Li M, Du F, Deng S, Shen J, Zhao Y, Xiao Z, Chen Y. Synthesis and antitumor evaluation of glycyrrhetinic acid-dithiocarbamate hybrids. Arch Pharm (Weinheim) 2024:e2400421. [PMID: 39526492 DOI: 10.1002/ardp.202400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Glycyrrhetinic acid (GA) is a naturally occurring triterpene compound. The aim of this study was to employ the pharmacophore hybrid strategy to merge GA with various dithiocarbamates and obtain novel compounds with better antitumor activities. We present a two-step synthetic protocol wherein the GA derivative underwent reaction with carbon disulfide and various secondary amines in a one-pot manner under mild conditions, facilitating the preparation of a series of structurally novel GA-dithiocarbamate derivatives. Bioassay screening revealed that the representative compound 3c demonstrated the capacity to reduce the mitochondrial membrane potential in Hep3B and Huh-7 cells, induce nuclear apoptosis, inhibit invasion and migration, and prompt both early and late apoptosis. Furthermore, our research findings indicated that this apoptotic phenomenon may be associated with the expression of Bcl-2, Bax, Bak, PARP, and cleaved-PARP proteins. Utilizing network pharmacology for predicting core targets and signaling pathways of compound 3c for hepatocellular carcinoma (HCC) treatment involved employing molecular docking models to demonstrate high affinity between compound and target protein. In conjunction with Western blot analysis, compound 3c may impact HCC through the PI3K-AKT-mTOR pathway.
Collapse
Affiliation(s)
- Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Sha Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
2
|
Deng H, Xiang L, Yuan Z, Lin B, He Y, Hou Q, Ruan Y, Zhang J. Facile access to S-methyl dithiocarbamates with sulfonium or sulfoxonium iodide as a methylation reagent. Org Biomol Chem 2023; 21:6474-6478. [PMID: 37523154 DOI: 10.1039/d3ob00932g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Efficient access to S-methyl dithiocarbamates was achieved with sulfonium or sulfoxonium iodide as a methylation reagent. This method is reliable for the synthesis of dithiocarbamates from primary or secondary amines, with sulfoxonium iodide demonstrating more robust methylation capability than sulfonium iodide. Moreover, it also enables facile access to S-trideuteromethyl dithiocarbamates via sulfoxonium metathesis between sulfoxonium iodide and DMSO-d6 with high yields.
Collapse
Affiliation(s)
- Huiying Deng
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Lingling Xiang
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Zhijun Yuan
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Bohong Lin
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Yiting He
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Qi Hou
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Yaoping Ruan
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Jing Zhang
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| |
Collapse
|
3
|
Sakla AP, Panda B, Mahale A, Sharma P, Laxmikeshav K, Ali Khan M, Kulkarni OP, Godugu C, Shankaraiah N. Regioselective synthesis and in vitro cytotoxicity evaluation of 3-thiooxindole derivatives: Tubulin polymerization inhibition and apoptosis inducing studies. Bioorg Med Chem 2023; 90:117297. [PMID: 37343499 DOI: 10.1016/j.bmc.2023.117297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/13/2023] [Accepted: 04/22/2023] [Indexed: 06/23/2023]
Abstract
Herein, regiospecific nucleophilic ring-opening of spiroaziridine oxindoles has been established to afford 3-substituted-thiooxindole derivatives as anticancer agents. Among the new series, compounds 7d and 9c exhibited promising cytotoxic activity toward HCT-116 cells with IC50 values of 6.73 ± 0.36 and 6.64 ± 0.95 µM, respectively. Further, AO/EB, DCFDA, and DAPI staining studies were executed to establish the underlying apoptosis mechanism which displayed significant nuclear and morphological alterations. JC-1 staining and annexin V binding assay inferred the loss of mitochondrial membrane potential in HCT-116 cancer cells. Cell cycle analysis showed the treatment of 9c against HCT-116 cells, arrested the cell cycle in G2-M phase. In addition, tubulin binding assay revealed that compound 9c exhibited tubulin polymerase inhibition with IC50 value of 9.73 ± 0.18 μM. This inhibition of tubulin polymerase was further supported by binding interactions of 9c with tubulin through docking studies on PDB ID: 3E22.
Collapse
Affiliation(s)
- Akash P Sakla
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Biswajit Panda
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Ashutosh Mahale
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500 078, India
| | - Pravesh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500 078, India
| | - Kritika Laxmikeshav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mursalim Ali Khan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Onkar Prakash Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500 078, India
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
4
|
Soni JP, Chilvery S, Sharma A, Reddy GN, Godugu C, Shankaraiah N. Design, synthesis and in vitro cytotoxicity evaluation of indolo-pyrazoles grafted with thiazolidinone as tubulin polymerization inhibitors. RSC Med Chem 2023; 14:549-562. [PMID: 36970141 PMCID: PMC10033828 DOI: 10.1039/d2md00442a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
In the pursuit of potential and effective chemotherapeutic agents, a series of 2-((3-(indol-3-yl)-pyrazol-5-yl)imino)thiazolidin-4-ones was designed and synthesized, conjoining salient pharmacophoric properties for directing prominent cytotoxicity. The in vitro cytotoxicity evaluation revealed potent compounds with IC50 values <10 μM on tested human cancer cell lines. Compound 6c exhibited the highest cytotoxicity with an IC50 value of 3.46 μM against melanoma cancer cells (SK-MEL-28) and was highly cytospecific and selective towards cancer cells. The traditional apoptosis assays revealed morphological and nuclear alterations such as apoptotic body formation, condensed/horseshoe-shaped/fragmented/blebbing nuclei, and the generation of ROS. Flow cytometric analysis revealed effective early-stage apoptosis induction and cell-cycle arrest in the G2/M phase. In addition, the enzyme-based effect of 6c on tubulin showed the inhibition of tubulin polymerization (about 60% inhibition, IC50 was <1.73 μM). Moreover, molecular modeling studies affirmed the constant accommodation of compound 6c at the active pocket of tubulin, establishing many electrostatic and hydrophobic interactions with the active pocket's residues. The tubulin-6c complex was stable during the MD simulation for 50 ns with the recommended range of RMSD value (2-4 Å) for each pose.
Collapse
Affiliation(s)
- Jay Prakash Soni
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500036 India
| | - Shrilekha Chilvery
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500036 India
| | - Anamika Sharma
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500036 India
| | - G Nikitha Reddy
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500036 India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500036 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500036 India
| |
Collapse
|
5
|
Synthesis of Oleanolic Acid-Dithiocarbamate Conjugates and Evaluation of Their Broad-Spectrum Antitumor Activities. Molecules 2023; 28:molecules28031414. [PMID: 36771080 PMCID: PMC9920998 DOI: 10.3390/molecules28031414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Efficient and mild synthetic routes for bioactive natural product derivatives are of current interest for drug discovery. Herein, on the basis of the pharmacophore hybrid strategy, we report a two-step protocol to obtain a series of structurally novel oleanolic acid (OA)-dithiocarbamate conjugates in mild conditions with high yields. Moreover, biological evaluations indicated that representative compound 3e exhibited the most potent and broad-spectrum antiproliferative effects against Panc1, A549, Hep3B, Huh-7, HT-29, and Hela cells with low cytotoxicity on normal cells. In terms of the IC50 values, these OA-dithiocarbamate conjugates were up to 30-fold more potent than the natural product OA. These compounds may be promising hit compounds for the development of novel anti-cancer drugs.
Collapse
|
6
|
Abdi A, Hosseini SS, Nikbakht A, Bijanzadeh HR, Rominger F, Balalaie S. Regioselective Hydrothiolation of Allenoates through a Ca(OTf)
2
‐Promoted Three‐Component Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202203372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Aida Abdi
- Peptide Chemistry Research Institute K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
| | - S. Sina Hosseini
- Peptide Chemistry Research Institute K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
| | - Ali Nikbakht
- Peptide Chemistry Research Institute K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
| | - Hamid Reza Bijanzadeh
- Department of Environmental Sciences Faculty of Natural Resources and Marine Sciences Tarbiat Modares University Noor Iran
| | - Frank Rominger
- Organisch-Chemisches Institut der Universität Heidelberg Im Neuenheimer Feld 271 69120 Heidelberg Germany
| | - Saeed Balalaie
- Peptide Chemistry Research Institute K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
| |
Collapse
|
7
|
Laxmikeshav K, Sharma P, Palepu M, Sharma P, Mahale A, George J, Phanindranath R, Dandekar MP, Kulkarni OP, Nagesh N, Shankaraiah N. Benzimidazole based bis-carboxamide derivatives as promising cytotoxic agents: Design, synthesis, in silico and tubulin polymerization inhibition. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Biswas A, Hajra S. Regio‐ and Stereospecific Desulfinylative Chlorination of Spiroaziridine Oxindoles at Spiro‐Center for Formal [3+2]‐Cycloaddition with CS2: Sequential One‐Pot Synthesis of (‐)‐Spirobrassinin. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Cheng F, Bai X, Sun QW, Zhu GF, Dong YX, Yang YY, Gao XL, Guo B, Tang L, Zhang JQ. Cobalt-promoted synthesis of sulfurated oxindoles via radical annulation of N-arylacrylamides with disulfides. Org Biomol Chem 2022; 20:6423-6431. [PMID: 35880643 DOI: 10.1039/d2ob00877g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient radical annulation of N-arylacrylamides with disulfides is developed for the synthesis of sulfurated oxindoles. The reaction occurs in a facile manner using CoBr2 as both an initiator and a promoter for the first time and (NH4)2S2O8 as the oxidant. By controlling the CoBr2/(NH4)2S2O8 ratio, a wide range of sulfurated and brominated/sulfurated oxindoles are selectively prepared in good to excellent yields. The present protocol is simple and highly atom economical, and can tolerate a broad range of substrates.
Collapse
Affiliation(s)
- Fei Cheng
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang, 550025, China.
| | - Xue Bai
- Pharmacy Department of Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Qi-Wen Sun
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang, 550025, China.
| | - Gao-Feng Zhu
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang, 550025, China.
| | - Yong-Xi Dong
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang, 550025, China.
| | - Yuan-Yong Yang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang, 550025, China.
| | - Xiu-Li Gao
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang, 550025, China.
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, China
| | - Lei Tang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang, 550025, China.
| | - Ji-Quan Zhang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
10
|
Hong K, Yang X, Zhang Z, Xie X, Lv X, Xu X, Hu W. Diastereoselective aldol-type interception of phenolic oxonium ylides for the direct assembly of 2,2-disubstituted dihydrobenzofurans. Org Biomol Chem 2022; 20:4635-4639. [PMID: 35611674 DOI: 10.1039/d2ob00723a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Rh2(OAc)4 catalyzed intermolecular aldol-type interception of phenolic oxonium ylides with isatins has been developed, which provides an effective access to 2,2-disubstituted dihydrobenzofuran derivatives containing 3-hydroxyoxindole in high yields and with high diastereoselectivities under mild reaction conditions. The antiproliferation activity of these synthesized dihydrobenzofuran and 3-hydroxyoxindole hybrid products has been tested via the CCK8 assay in different cancer cell lines; compounds 3s and 3t exhibit good anticancer potency against human colon cancer cells (HCT116 cells, 3s: IC50 = 15.99 μM; 3t: IC50 = 14.48 μM) compared to other tested compounds.
Collapse
Affiliation(s)
- Kemiao Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xiangji Yang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Zhijing Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xiongda Xie
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xin Lv
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|