1
|
Luo L, Luo JZ, Song XX, Wang CY, Tang DM, Sun WT, Fan CW, Li MS, Wang HS. Alkaloids from Corydalis saxicola and their antiproliferative activity against cancer cells. Fitoterapia 2024; 173:105791. [PMID: 38159614 DOI: 10.1016/j.fitote.2023.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Eight undescribed alkaloids named corydalisine D-K (1-7), including one isoquinoline benzopyranone alkaloid (1), one benzocyclopentanone alkaloid (2), four benzofuranone alkaloids (3, 4, and 5a/5b) and two protoberberine alkaloids (6 and 7), along with fourteen known ones, were isolated from the Corydalis saxicola. Their structures, including absolute configurations, were unambiguously identified using spectroscopic techniques, single-crystal X-ray diffraction and electron circular dichroism calculation. Compounds 2, 14 and 21 exhibit antiproliferative activity against five cancer cell lines. The aporphine alkaloid demethylsonodione (compound 14), which exhibited the best activity (IC50 = 3.68 ± 0.25 μM), was subjected to further investigation to determine its mechanism of action against the T24 cell line. The molecular mechanism was related to the arrest of cell cycle S-phase, inhibition of CDK2 expression, accumulation of reactive oxygen species (ROS), induction of cell apoptosis, inhibition of cell migration, and activation of p38 MAPK signaling pathway. The results indicated that 14 could be used as a potential candidate agent for further development of anti-bladder transitional cell carcinoma.
Collapse
Affiliation(s)
- Li Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Jia-Zi Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China; Research Center for the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Xi-Xi Song
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Cai-Yi Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - De-Ming Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Wen-Tao Sun
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Cai-Wen Fan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Mei-Shan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| |
Collapse
|
2
|
Peng R, Xu M, Xie B, Min Q, Hui S, Du Z, Liu Y, Yu W, Wang S, Chen X, Yang G, Bai Z, Xiao X, Qin S. Insights on Antitumor Activity and Mechanism of Natural Benzophenanthridine Alkaloids. Molecules 2023; 28:6588. [PMID: 37764364 PMCID: PMC10535962 DOI: 10.3390/molecules28186588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Benzophenanthridine alkaloids are a class of isoquinoline compounds, which are widely found in the plants of papaveraceae, corydalis, and rutaceae. Biological activities and clinical studies have shown that benzophenanthridine alkaloids have inhibitory effects on many cancers. Considering that the anticancer activities and mechanisms of many natural benzophenanthridine alkaloids have been discovered in succession, the purpose of this paper is to review the anticancer effects of benzophenanthridine alkaloids and explore the application potential of these natural products in the development of antitumor drugs. A literature survey was carried out using Scopus, Pubmed, Reaxys, and Google Scholar databases. This review summarizes and analyzes the current status of research on the antitumor activity and antitumor mechanism of natural products of benzophenanthridine from different sources. The research progress of the antitumor activity of natural products of benzophenanthridine from 1983 to 2023 was reviewed. The antitumor activities of 90 natural products of benzophenanthridine and their related analogues were summarized, and the results directly or indirectly showed that natural products of benzophenanthridine had the effects of antidrug-resistant tumor cell lines, antitumor stem cells, and inducing ferroptosis. In conclusion, benzophenanthridine alkaloids have inhibitory effects on a variety of cancers and have the potential to counteract tumor resistance, and they have great application potential in the development of antitumor drugs.
Collapse
Affiliation(s)
- Rui Peng
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Mengwei Xu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Baocheng Xie
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China
| | - Qing Min
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Siwen Hui
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Ziwei Du
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China
| | - Yan Liu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China
| | - Wei Yu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Shi Wang
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xin Chen
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Zhaofang Bai
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Xiaohe Xiao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Shuanglin Qin
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| |
Collapse
|
3
|
Dai L, Qin F, Xie Y, Zhang B, Zhang Z, Liang S, Chen F, Huang X, Wang H. Antitumor activity and mechanisms of dual EGFR/DNA-targeting strategy for the treatment of lung cancer with EGFRL858R/T790M mutation. Bioorg Chem 2023; 135:106510. [PMID: 37018899 DOI: 10.1016/j.bioorg.2023.106510] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023]
Abstract
Dual- or multi-targeted EGFR inhibitors as single drugs can overcome EGFR inhibitor resistance and circumvent many disadvantages of combination therapy. In this work, fifteen 4-anilinoquinazoline derivatives bearing nitrogen mustard or hemi mustard moieties were designed and synthesized as dual EGFR-DNA targeting anticancer agents. Structures of target molecules were confirmed by 1H NMR, 13C NMR and HR-MS, and evaluated for their in vitro anti-proliferative activities using MTT assay. Compound 6g emerged as the most potent derivative against mutant-type H1975 cells with IC50 value of 1.45 μM, which exhibited 4-fold stronger potency than Chl/Gef (equimolar combination of chlorambucil and gefitinib). Kinase inhibition studies indicated that 6g showed excellent inhibitory effect on EGFRL858R/T790M enzyme, which was 8.6 times more effective than gefitinib. Mechanistic studies indicated that 6g induced apoptosis of H1975 cells in a dose-dependent manner and caused DNA damage. Importantly, 6g could significantly inhibit the expression of p-EGFR and its downstream p-AKT and p-ERK in H1975 cells. Molecular docking was also performed to gain insights into the ligand-binding interactions of 6g inside EGFRWT and EGFRL858R/T790M binding sites. Moreover, 6g efficiently inhibited tumor growth in the H1975 xenograft model without side effects.
Collapse
|
4
|
Corydalis saxicola Bunting: A Review of Its Traditional Uses, Phytochemistry, Pharmacology, and Clinical Applications. Int J Mol Sci 2023; 24:ijms24021626. [PMID: 36675133 PMCID: PMC9864617 DOI: 10.3390/ijms24021626] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 01/18/2023] Open
Abstract
Corydalis saxicola Bunting (CSB), whose common name in Chinese is Yanhuanglian, is a herb in the family Papaveraceae. When applied in traditional Chinese medicine, it is used to treat various diseases including hepatitis, abdominal pain, and bleeding haemorrhoids. In addition, Corydalis saxicola Bunting injection (CSBI) is widely used against acute and chronic hepatitis. This review aims to provide up-to-date information on the botanical distribution, description, traditional uses, phytochemistry, pharmacology, and clinical applications of CSB. A comprehensive review was implemented on studies about CSB from several scientific databases, such as SciFinder, Elsevier, Springer, ACS Publications, Baidu Scholar, CNKI, and Wanfang Data. Phytochemical studies showed that 81 chemical constituents have been isolated and identified from CSB, most of which are alkaloids. This situation indicates that these alkaloids would be the main bioactive substances and that they have antitumour, liver protective, antiviral, and antibacterial pharmacological activities. CSBI can not only treat hepatitis and liver cancer but can also be used in combination with other drugs. However, the relationships between the traditional uses and modern pharmacological actions, the action mechanisms, quality standards, and the material basis need to be implemented in the future. Moreover, the pharmacokinetics of CSBI in vivo and the toxicology should be further investigated.
Collapse
|