1
|
Sabury S, Xu Z, Saiev S, Davies D, Österholm AM, Rinehart JM, Mirhosseini M, Tong B, Kim S, Correa-Baena JP, Coropceanu V, Jurchescu OD, Brédas JL, Diao Y, Reynolds JR. Non-covalent planarizing interactions yield highly ordered and thermotropic liquid crystalline conjugated polymers. MATERIALS HORIZONS 2024; 11:3352-3363. [PMID: 38686501 DOI: 10.1039/d3mh01974h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Controlling the multi-level assembly and morphological properties of conjugated polymers through structural manipulation has contributed significantly to the advancement of organic electronics. In this work, a redox active conjugated polymer, TPT-TT, composed of alternating 1,4-(2-thienyl)-2,5-dialkoxyphenylene (TPT) and thienothiophene (TT) units is reported with non-covalent intramolecular S⋯O and S⋯H-C interactions that induce controlled main-chain planarity and solid-state order. As confirmed by density functional theory (DFT) calculations, these intramolecular interactions influence the main chain conformation, promoting backbone planarization, while still allowing dihedral rotations at higher kinetic energies (higher temperature), and give rise to temperature-dependent aggregation properties. Thermotropic liquid crystalline (LC) behavior is confirmed by cross-polarized optical microscopy (CPOM) and closely correlated with multiple thermal transitions observed by differential scanning calorimetry (DSC). This LC behavior allows us to develop and utilize a thermal annealing treatment that results in thin films with notable long-range order, as shown by grazing-incidence X-ray diffraction (GIXD). Specifically, we identified a first LC phase, ranging from 218 °C to 107 °C, as a nematic phase featuring preferential face-on π-π stacking and edge-on lamellar stacking exhibiting a large extent of disorder and broad orientation distribution. A second LC phase is observed from 107 °C to 48 °C, as a smectic A phase featuring sharp, highly ordered out-of-plane lamellar stacking features and sharp tilted backbone stacking peaks, while the structure of a third LC phase with a transition at 48 °C remains unclear, but resembles that of the solid state at ambient temperature. Furthermore, the significance of thermal annealing is evident in the ∼3-fold enhancement of the electrical conductivity of ferric tosylate-doped annealed films reaching 55 S cm-1. More importantly, thermally annealed TPT-TT films exhibit both a narrow distribution of charge-carrier mobilities (1.4 ± 0.1) × 10-2 cm2 V-1 s-1 along with a remarkable device yield of 100% in an organic field-effect transistor (OFET) configuration. This molecular design approach to obtain highly ordered conjugated polymers in the solid state affords a deeper understanding of how intramolecular interactions and repeat-unit symmetry impact liquid crystallinity, solution aggregation, solution to solid-state transformation, solid-state morphology, and ultimately device applications.
Collapse
Affiliation(s)
- Sina Sabury
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Zhuang Xu
- Department of Chemical and Biomolecular Engineering, Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA
| | - Shamil Saiev
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721-0041, USA
| | - Daniel Davies
- Department of Chemical and Biomolecular Engineering, Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA
| | - Anna M Österholm
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Joshua M Rinehart
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Motahhare Mirhosseini
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Benedict Tong
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Sanggyun Kim
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Juan-Pablo Correa-Baena
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Veaceslav Coropceanu
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721-0041, USA
| | - Oana D Jurchescu
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Jean-Luc Brédas
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721-0041, USA
| | - Ying Diao
- Department of Chemical and Biomolecular Engineering, Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA
| | - John R Reynolds
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| |
Collapse
|
2
|
Zhu Z, Lu L, Li C, Xiao Q, Wu T, Tang J, Gu Y, Bao K, Zhang Y, Jiang L, Liu Y, Zhang W, Zhou S, Qin W. GIWAXS experimental methods at the NFPS-BL17B beamline at Shanghai Synchrotron Radiation Facility. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:968-978. [PMID: 38917022 PMCID: PMC11226147 DOI: 10.1107/s1600577524004764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
The BL17B beamline at the Shanghai Synchrotron Radiation Facility was first designed as a versatile high-throughput protein crystallography beamline and one of five beamlines affiliated to the National Facility for Protein Science in Shanghai. It was officially opened to users in July 2015. As a bending magnet beamline, BL17B has the advantages of high photon flux, brightness, energy resolution and continuous adjustable energy between 5 and 23 keV. The experimental station excels in crystal screening and structure determination, providing cost-effective routine experimental services to numerous users. Given the interdisciplinary and green energy research demands, BL17B beamline has undergone optimization, expanded its range of experimental methods and enhanced sample environments for a more user-friendly testing mode. These methods include single-crystal X-ray diffraction, powder crystal X-ray diffraction, wide-angle X-ray scattering, grazing-incidence wide-angle X-ray scattering (GIWAXS), and fully scattered atom pair distribution function analysis, covering structure detection from crystalline to amorphous states. This paper primarily presents the performance of the BL17B beamline and the application of the GIWAXS methodology at the beamline in the field of perovskite materials.
Collapse
Affiliation(s)
- Zhongjie Zhu
- National Facility for Protein Science in ShanghaiShanghai Advanced Research Institute, Chinese Academy of SciencesPudong DistrictPeople’s Republic of China
| | - Lanlu Lu
- National Facility for Protein Science in ShanghaiShanghai Advanced Research Institute, Chinese Academy of SciencesPudong DistrictPeople’s Republic of China
| | - Chunyu Li
- National Facility for Protein Science in ShanghaiShanghai Advanced Research Institute, Chinese Academy of SciencesPudong DistrictPeople’s Republic of China
| | - Qingjie Xiao
- National Facility for Protein Science in ShanghaiShanghai Advanced Research Institute, Chinese Academy of SciencesPudong DistrictPeople’s Republic of China
| | - Tingting Wu
- National Facility for Protein Science in ShanghaiShanghai Advanced Research Institute, Chinese Academy of SciencesPudong DistrictPeople’s Republic of China
| | - Jianchao Tang
- National Facility for Protein Science in ShanghaiShanghai Advanced Research Institute, Chinese Academy of SciencesPudong DistrictPeople’s Republic of China
| | - Yijun Gu
- National Facility for Protein Science in ShanghaiShanghai Advanced Research Institute, Chinese Academy of SciencesPudong DistrictPeople’s Republic of China
| | - Kangwen Bao
- National Facility for Protein Science in ShanghaiShanghai Advanced Research Institute, Chinese Academy of SciencesPudong DistrictPeople’s Republic of China
| | - Yupu Zhang
- National Facility for Protein Science in ShanghaiShanghai Advanced Research Institute, Chinese Academy of SciencesPudong DistrictPeople’s Republic of China
| | - Luozhen Jiang
- National Facility for Protein Science in ShanghaiShanghai Advanced Research Institute, Chinese Academy of SciencesPudong DistrictPeople’s Republic of China
| | - Yang Liu
- National Facility for Protein Science in ShanghaiShanghai Advanced Research Institute, Chinese Academy of SciencesPudong DistrictPeople’s Republic of China
| | - Weizhe Zhang
- National Facility for Protein Science in ShanghaiShanghai Advanced Research Institute, Chinese Academy of SciencesPudong DistrictPeople’s Republic of China
| | - Shuyu Zhou
- National Facility for Protein Science in ShanghaiShanghai Advanced Research Institute, Chinese Academy of SciencesPudong DistrictPeople’s Republic of China
| | - Wenming Qin
- National Facility for Protein Science in ShanghaiShanghai Advanced Research Institute, Chinese Academy of SciencesPudong DistrictPeople’s Republic of China
| |
Collapse
|
3
|
Zhao Z, Sun M, Ji Y, Mao K, Huang Z, Yuan C, Yang Y, Ding H, Yang Y, Li Y, Chen W, Zhu J, Wei J, Xu J, Paritmongkol W, Abate A, Xiao Z, He L, Hu Q. Efficient Homojunction Tin Perovskite Solar Cells Enabled by Gradient Germanium Doping. NANO LETTERS 2024; 24:5513-5520. [PMID: 38634689 DOI: 10.1021/acs.nanolett.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
P-type self-doping is known to hamper tin-based perovskites for developing high-performance solar cells by increasing the background current density and carrier recombination processes. In this work, we propose a gradient homojunction structure with germanium doping that generates an internal electric field across the perovskite film to deplete the charge carriers. This structure reduces the dark current density of perovskite by over 2 orders of magnitude and trap density by an order of magnitude. The resultant tin-based perovskite solar cells exhibit a higher power conversion efficiency of 13.3% and excellent stability, maintaining 95% and 85% of their initial efficiencies after 250 min of continuous illumination and 3800 h of storage, respectively. We reveal the homojunction formation mechanism using density functional theory calculations and molecular level characterizations. Our work provides a reliable strategy for controlling the spatial energy levels in tin perovskite films and offers insights into designing intriguing lead-free perovskite optoelectronics.
Collapse
Affiliation(s)
- Zhenzhu Zhao
- School of Microelectronics, University of Science and Technology of China, Hefei 230026, China
| | - Mulin Sun
- School of Microelectronics, University of Science and Technology of China, Hefei 230026, China
| | - Yuyang Ji
- Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
| | - Kaitian Mao
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zongming Huang
- Department of Physics, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China
| | - Chengjian Yuan
- School of Microelectronics, University of Science and Technology of China, Hefei 230026, China
| | - Yuqian Yang
- School of Microelectronics, University of Science and Technology of China, Hefei 230026, China
| | - Honghe Ding
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Yingguo Yang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Yu Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
- 3rd Institute of Physics, University of Stuttgart, Stuttgart 70569, Germany
| | - Wenjing Chen
- Department of Physics, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Jing Wei
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jixian Xu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Watcharaphol Paritmongkol
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan Valley, Rayong 21210, Thailand
| | - Antonio Abate
- Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße 5, Berlin 12489, Germany
| | - Zhengguo Xiao
- Department of Physics, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China
| | - Lixin He
- Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230026, China
| | - Qin Hu
- School of Microelectronics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Zhang L, He Y, Deng W, Guo X, Bi Z, Zeng J, Huang H, Zhang G, Xie C, Zhang Y, Hu X, Ma W, Yuan Y, Yuan X. High-efficiency flexible organic solar cells with a polymer-incorporated pseudo-planar heterojunction. DISCOVER NANO 2024; 19:39. [PMID: 38436896 PMCID: PMC10912397 DOI: 10.1186/s11671-024-03982-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Organic solar cells (OSCs) are considered as a crucial energy source for flexible and wearable electronics. Pseudo-planar heterojunction (PPHJ) OSCs simplify the solution preparation and morphology control. However, non-halogenated solvent-printed PPHJ often have an undesirable vertical component distribution and insufficient donor/acceptor interfaces. Additionally, the inherent brittleness of non-fullerene small molecule acceptors (NFSMAs) in PPHJ leads to poor flexibility, and the NFSMAs solution shows inadequate viscosity during the printing of acceptor layer. Herein, we propose a novel approach termed polymer-incorporated pseudo-planar heterojunction (PiPPHJ), wherein a small amount of polymer donor is introduced into the NFSMAs layer. Our findings demonstrate that the incorporation of polymer increases the viscosity of acceptor solution, thereby improving the blade-coating processability and overall film quality. Simultaneously, this strategy effectively modulates the vertical component distribution, resulting in more donor/acceptor interfaces and an improved power conversion efficiency of 17.26%. Furthermore, PiPPHJ-based films exhibit superior tensile properties, with a crack onset strain of 12.0%, surpassing PPHJ-based films (9.6%). Consequently, large-area (1 cm2) flexible devices achieve a considerable efficiency of 13.30% and maintain excellent mechanical flexibility with 82% of the initial efficiency after 1000 bending cycles. These findings underscore the significant potential of PiPPHJ-based OSCs in flexible and wearable electronics.
Collapse
Affiliation(s)
- Lin Zhang
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, 410083, China.
| | - Yuxin He
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, 410083, China
| | - Wen Deng
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, 410083, China
| | - Xueliang Guo
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, 410083, China
| | - Zhaozhao Bi
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jie Zeng
- Department of Materials Science and Engineering, and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hui Huang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Guangye Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Chen Xie
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yong Zhang
- Department of Materials Science and Engineering, and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaotian Hu
- Institute of Polymers and Energy Chemistry, College of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yongbo Yuan
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, 410083, China
| | - Xiaoming Yuan
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, 410083, China.
| |
Collapse
|
5
|
Ren S, Zhang W, Chen J, Yassar A. Theoretical and Experimental Study of Different Side Chains on 3,4-Ethylenedioxythiophene and Diketopyrrolopyrrole-Derived Polymers: Towards Organic Transistors. Int J Mol Sci 2024; 25:1099. [PMID: 38256172 PMCID: PMC10816275 DOI: 10.3390/ijms25021099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
In this research, two polymers of P1 and P2 based on monomers consisting of thiophene, 3,4-Ethylenedioxythiophene (EDOT) and diketopyrrolopyrrole (DPP) are designed and obtained via Stille coupling polycondensation. The material shows excellent coplanarity and structural regularity due to the fine planarity of DPP itself and the weak non-covalent bonding interactions existing between the three units. Two different lengths of non-conjugated side chains are introduced and this has an effect on the intermolecular chain stacking, causing the film absorption to display different characteristic properties. On the other hand, the difference in the side chains does not have a significant effect on the thermal stability and the energy levels of the frontier orbitals of the materials, which is related to the fact that the materials both feature extremely high conjugation lengths and specific molecular compositions. Microscopic investigations targeting the side chains provide a contribution to the further design of organic semiconductor materials that meet device requirements. Tests based on organic transistors show a slight difference in conductivity between the two polymers, with P2 having better hole mobility than P1. This study highlights the importance of the impact of side chains on device performance, especially in the field of organic electronics.
Collapse
Affiliation(s)
- Shiwei Ren
- Advanced Materials Laboratory, Zhuhai-Fudan Innovation Institute, Guangdong-Macao in-Depth Cooperation Zone in Hengqin, Hengqin 519000, China;
| | - Wenqing Zhang
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
| | - Jinyang Chen
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
| | - Abderrahim Yassar
- Laboratory of Physics of Interfaces and Thin Films, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
6
|
Yan M, Hao Q, Diao S, Zhou F, Yichen C, Jiang N, Zhao C, Ren XR, Yu F, Tong J, Wang D, Liu H. Smart Home Sleep Respiratory Monitoring System Based on a Breath-Responsive Covalent Organic Framework. ACS NANO 2024; 18:728-737. [PMID: 38118144 DOI: 10.1021/acsnano.3c09018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
A smart home sleep respiratory monitoring system based on a breath-responsive covalent organic framework (COF) was developed and utilized to monitor the sleep respiratory behavior of real sleep apnea patients in this work. The capacitance of the interdigital electrode chip coated with COFTPDA-TFPy exhibits thousands-level reversible responses to breath humidity gases, with subsecond response time and robustness against environmental humidity. A miniaturized printed circuit board, an open-face-mask-based respiratory sensor, and a smartphone app were constructed for the wearable wireless smart home sleep respiratory monitoring system. Leveraging the sensitive and rapid reversible response of COFs, the COF-based respiratory monitoring system can effectively record normal breath, rapid breath, and breath apnea, enabling over a thousand cycles of hour-level continuous monitoring during daily wear. Next, we took the groundbreaking step of advancing the humidity sensor to the clinical trial stage. In clinical experiments on real sleep apnea patients, the COF-based respiratory monitoring system successfully recorded hour-level sleep respiratory data and differentiated the breathing behavior characteristics and severity of sleep apnea patients and subjects with normal sleep function and primary snoring patients. This work successfully advanced humidity sensors into clinical research for real patients and demonstrated the enormous application potential of COF materials in clinical diagnosis.
Collapse
Affiliation(s)
- Mengwen Yan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Qing Hao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Shanyan Diao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Fan Zhou
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Chen Yichen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Nan Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Chao Zhao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Xiao-Rui Ren
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Fuchao Yu
- Department of Cardiology, Zhongda Hospital, Nanjing, China Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| | - Jiayi Tong
- Department of Cardiology, Zhongda Hospital, Nanjing, China Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Hong Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| |
Collapse
|
7
|
Liu X, Li H, Zhang W, Yang Z, Li D, Liu M, Jin K, Wang L, Yu G. Magnetoresistance in Organic Spin Valves Based on Acid-Exfoliated 2D Covalent Organic Frameworks Thin Films. Angew Chem Int Ed Engl 2023; 62:e202308921. [PMID: 37668952 DOI: 10.1002/anie.202308921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/06/2023]
Abstract
Covalent organic frameworks (COFs), as a burgeoning class of crystalline porous materials, have made significant progress in their application to optoelectronic devices such as field-effect transistors, memristors, and photodetectors. However, the insoluble features of microcrystalline two-dimensional (2D) COF powders limit development of their thin film devices. Additionally, the exploration of spin transport properties in this category of π-conjugated skeleton materials remains vacant thus far. Herein, an imine-linked 2D Py-Np COF nanocrystalline powder was synthesized by Schiff base condensation of 4,4',4'',4'''-(pyrene-1,3,6,8-tetrayl)tetraaniline and naphthalene-2,6-dicarbaldehyde. Then, we prepared a large-scale free-standing Py-Np COF film via a top-down strategy of chemically assisted acid exfoliation. Moreover, high-quality COF films acted as active layers were transferred onto ferromagnetic La0.67 Sr0.33 MnO3 (LSMO) electrodes for the first attempt to fabricate organic spin valves (OSVs) based on 2D COF materials. This COF-based OSV device with a configuration of LSMO/Py-Np COF/Co/Au demonstrated a remarkable magnetoresistance (MR) value up to -26.5 % at 30 K. Meanwhile, the MR behavior of the COF-based OSVs exhibited a highly temperature dependence and operational stability. This work highlights the enormous application prospects of 2D COFs in organic spintronics and provides a promising approach for developing electronic and spintronic devices based on acid-exfoliated COF thin films.
Collapse
Affiliation(s)
- Xitong Liu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hao Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Materials Science and Engineering, University of Science and Technology, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhen Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dong Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mengya Liu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Materials Science and Engineering, University of Science and Technology, Beijing, 100083, P. R. China
| | - Kuijuan Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Songshan Lake Materials Laboratory Dongguan, Guangdong, 523808, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Jiang L, Li Z, Dong Q, Rong X, Dong G. 2D/3D Perovskite Photodetectors with High Response Frequency and Improved Stability Based on Thiophene-2-ethylamine and Dual Additives. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37364061 DOI: 10.1021/acsami.3c07712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Organic-inorganic lead halide perovskite materials have received great attention in recent years. However, the poor stability of these materials severely limits the commercial application of perovskite devices. Here, we used thiophene-2-ethylammonium iodide (TEAI) material as the organic spacer NH4SCN and NH4Cl as the dual additives to realize high-stability two-dimensional (2D)/three-dimensional (3D) perovskite thin films for perovskite photodetectors. Then, we investigated different effects of the dual additives on the orientation and crystallinity of the perovskite films. At room temperature, the optimized 2D/3D perovskite photodetectors exhibit good performance with high external quantum efficiency (EQE) (72%), large responsivity (0.36 A/W), high detectivity (2.46 × 1012 Jones at the bias of 0 V), high response frequency (1.7 MHz), and improved stability (retains 90% photocurrent after 2000 h storage in RT and 10% RH conditions). Based on these devices, a dual-channel optical transport system and a light-intensity adder are achieved. The results of this study indicate that, with a simple process, the TEAI and dual-additives based 2D/3D perovskite photodetectors have promising applications in light-intensity adder and optical communication systems.
Collapse
Affiliation(s)
- Lixian Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhewei Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Qingshun Dong
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xin Rong
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Guifang Dong
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
9
|
Zhang L, Li H, Zhao K, Zhang T, Liu D, Wang S, Wu F, Zhang Q, Han Y. Achieving the high charge mobility of conjugated polymers under cyclic stretching by changing the interaction parameter between solvent and sidechain. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
10
|
Park S, Ryu S, Ho D, Chae W, Earmme T, Kim C, Seo S. Novel benzo[ b]thieno[2,3- d]thiophene derivatives with an additional alkyl-thiophene core: synthesis, characterization, and p-type thin film transistor performance. NEW J CHEM 2022. [DOI: 10.1039/d2nj01635d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Newly synthesized benzo[b]thieno[2,3-d]thiophene derivatives were employed as active layers of organic field effect transistors, and these transistors showed decent electrical performance.
Collapse
Affiliation(s)
- Soyoon Park
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - Soomin Ryu
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Korea
| | - Dongil Ho
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - Wookil Chae
- Department of Chemical Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 04066, Republic of Korea
| | - Taeshik Earmme
- Department of Chemical Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 04066, Republic of Korea
| | - Choongik Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - SungYong Seo
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Korea
- Department of Chemistry, Pukyong National University, Busan 48513, Korea
| |
Collapse
|