Clapperton A, Babi J, Tran H. A Field Guide to Optimizing Peptoid Synthesis.
ACS POLYMERS AU 2022;
2:417-429. [PMID:
36536890 PMCID:
PMC9756346 DOI:
10.1021/acspolymersau.2c00036]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 12/19/2022]
Abstract
N-Substituted glycines (peptoids) are a class of peptidomimetic molecules used as materials for health, environmental, and drug delivery applications. Automated solid-phase synthesis is the most widely used approach for preparing polypeptoids, with a range of published protocols and modifications for selected synthetic targets. Simultaneously, emerging solution-phase syntheses are being leveraged to overcome limitations in solid-phase synthesis and access high-molecular weight polypeptoids. This Perspective aims to outline strategies for the optimization of both solid- and solution-phase synthesis, provide technical considerations for robotic synthesizers, and offer an outlook on advances in synthetic methodologies. The solid-phase synthesis sections explore steps for protocol optimization, accessing complex side chains, and adaptation to robotic synthesizers; the sections on solution-phase synthesis cover the selection of initiators, side chain compatibility, and strategies for controlling polymerization efficiency and scale. This text acts as a "field guide" for researchers aiming to leverage the flexibility and adaptability of peptoids in their research.
Collapse