1
|
Babanyinah GK, Bhadran A, Polara H, Wang H, Shah T, Biewer MC, Stefan MC. Maleimide functionalized polycaprolactone micelles for glutathione quenching and doxorubicin delivery. Chem Sci 2024; 15:9987-10001. [PMID: 38966382 PMCID: PMC11220601 DOI: 10.1039/d4sc01625d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
High glutathione production is known to be one of the defense mechanisms by which many cancer cells survive elevated oxidative stress. By explicitly targeting glutathione in these cancer cells and diminishing its levels, oxidative stress can be intensified, ultimately triggering apoptosis or programmed cell death. Herein, we developed a novel approach by creating maleimide-functionalized polycaprolactone polymers, specifically using 2,3-diiodomaleimide functionality to reduce the level of glutathione in cancer cells. Polycaprolactone was chosen to conjugate the 2,3-diiodomaleimide functionality due to its biodegradable and biocompatible properties. The amphiphilic block copolymer was synthesized using PEG as a macroinitiator to make corresponding polymeric micelles. The resulting 2,3-diiodomaleimide-conjugated polycaprolactone micelles effectively quenched glutathione, even at low concentrations (0.01 mg mL-1). Furthermore, we loaded these micelles with the anticancer drug doxorubicin (DOX), which exhibited pH-dependent drug release. We obtained a loading capacity (LC) of 3.5% for the micelles, one of the highest LC reported among functional PCL-based micelles. Moreover, the enhanced LC doesn't affect their release profile. Cytotoxicity experiments demonstrated that empty and DOX-loaded micelles inhibited cancer cell growth, with the DOX-loaded micelles displaying the highest cytotoxicity. The ability of the polymer to quench intracellular GSH was also confirmed. This approach of attaching maleimide to polycaprolactone polymers shows promise in depleting elevated glutathione levels in cancer cells, potentially improving cancer treatment efficacy.
Collapse
Affiliation(s)
- Godwin K Babanyinah
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Abhi Bhadran
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Himanshu Polara
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Hanghang Wang
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Tejas Shah
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| |
Collapse
|
2
|
Wang H, Polara H, Bhadran A, Shah T, Babanyinah GK, Ma Z, Calubaquib EL, Miller JT, Biewer MC, Stefan MC. Effect of aromatic substituents on thermoresponsive functional polycaprolactone micellar carriers for doxorubicin delivery. Front Pharmacol 2024; 15:1356639. [PMID: 38500763 PMCID: PMC10945023 DOI: 10.3389/fphar.2024.1356639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/19/2024] [Indexed: 03/20/2024] Open
Abstract
Amphiphilic functional polycaprolactone (PCL) diblock copolymers are excellent candidates for micellar drug delivery. The functional groups on the backbone significantly affect the properties of PCL. A systematic investigation of the effect of aromatic substituents on the self-assembly of γ-functionalized PCLs and the delivery of doxorubicin (DOX) is presented in this work. Three thermoresponsive amphiphilic diblock copolymers with poly(γ-benzyloxy-ε-caprolactone) (PBnCL), poly(γ-phenyl- ε-caprolactone) (PPhCL), poly(γ-(4-ethoxyphenyl)-ε-caprolactone) (PEtOPhCL), respectively, as hydrophobic block and γ-tri(ethylene glycol) functionalized PCL (PME3CL) as hydrophilic block were prepared through ring-opening polymerization (ROP). The thermoresponsivity, thermodynamic stability, micelle size, morphology, DOX-loading, and release profile were determined. The LCST values of amphiphilic diblock copolymers PME3CL-b-PBnCL, PME3CL-b-PPhCL, and PME3CL-b-PEtOPhCL are 74.2°C, 43.3°C, and 37.3°C, respectively. All three copolymers formed spherical micelles in phosphate-buffered saline (PBS, 1×, pH = 7.4) at low concentrations ranging from 8.7 × 10-4 g/L to 8.9 × 10-4 g/L. PME3CL-b-PBnCL micelles showed the highest DOX loading capacity of 3.01 ± 0.18 (wt%) and the lowest drug release, while PME3CL-b-PEtOPhCL micelles exhibited the lowest DOX loading capacity of 1.95 ± 0.05 (wt%) and the highest drug release. Cytotoxicity and cellular uptake of all three micelles were assessed in vitro using MDA-MB-231 breast cancer cells. All three empty micelles did not show significant toxicity to the cells at concentrations high up to 0.5 mg/mL. All three DOX-loaded micelles were uptaken into the cells, and DOX was internalized into the nucleus of the cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Michael C. Biewer
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, United States
| | - Mihaela C. Stefan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
3
|
Bhadran A, Polara H, Calubaquib EL, Wang H, Babanyinah GK, Shah T, Anderson PA, Saleh M, Biewer MC, Stefan MC. Reversible Cross-linked Thermoresponsive Polycaprolactone Micelles for Enhanced Stability and Controlled Release. Biomacromolecules 2023; 24:5823-5835. [PMID: 37963215 DOI: 10.1021/acs.biomac.3c00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Thermoresponsive amphiphilic poly(ε-caprolactone)s (PCL)s are excellent candidates for drug delivery due to their biodegradability, biocompatibility, and controlled release. However, the thermoresponsivity of modified PCL can often lead to premature drug release because their lower critical solution temperature (LCST) is close to physiological temperature conditions. To address this issue, we developed a novel approach that involves functionalizing redox-responsive lipoic acid to the hydrophobic block of PCL. Lipoic acid has disulfide bonds that undergo reversible cross-linking after encapsulating the drug. Herein, we synthesized an ether-linked propargyl-substituted PCL as the hydrophobic block of an amphiphilic copolymer along with unsubstituted PCL. The propargyl group was used to attach lipoic acid through a postpolymerization modification reaction. The hydrophilic block is composed of an ether-linked, thermoresponsive tri(ethylene glycol)-substituted PCL. Anticancer drug doxorubicin (DOX) was encapsulated within the core of the micelles and induced cross-linking in the presence of a reducing agent, dithiothreitol. The developed micelles are thermodynamically stable and demonstrated thermoresponsivity with an LCST value of 37.5 °C but shifted to 40.5 °C after cross-linking. The stability and release of both uncross-linked (LA-PCL) and cross-linked (CLA-PCL) micelles were studied at physiological temperatures. The results indicated that CLA-PCL was stable, and only 35% release was observed after 46 h at 37 °C while LA-PCL released more than 70% drug at the same condition. Furthermore, CLA-PCL was able to release a higher amount of DOX in the presence of glutathione and above the LCST condition (42 °C). Cytotoxicity experiments revealed that CLA-PCL micelles are more toxic toward MDA-MB-231 breast cancer cells at 42 °C than at 37 °C, which supported the thermoresponsive release of the drug. These results indicate that the use of reversible cross-linking is a great approach toward synthesizing stable thermoresponsive micelles with reduced premature drug leakage.
Collapse
Affiliation(s)
- Abhi Bhadran
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Himanshu Polara
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Erika L Calubaquib
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Hanghang Wang
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Godwin K Babanyinah
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Tejas Shah
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Paul Alexander Anderson
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Mohammad Saleh
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
4
|
Ota T, Montagna V, Higuchi Y, Kato T, Tanaka M, Sardon H, Fukushima K. Organocatalyzed ring-opening reactions of γ-carbonyl-substituted ε-caprolactones. RSC Adv 2023; 13:27764-27771. [PMID: 37731833 PMCID: PMC10507672 DOI: 10.1039/d3ra01025b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
Side-chain-functionalized aliphatic polyesters are promising as functional biodegradable polymers. We have investigated ring-opening reactions of γ-carbonyl-substituted ε-caprolactones (gCCLs) to obtain poly(ε-caprolactone) (PCL) analogues. Organic catalysts and Sn(Oct)2 often used for the ring-opening polymerization (ROP) of ε-caprolactone (CL) have been explored to find the conditions for the formation of polymeric products of gCCLs. We confirmed the consumption of gCCLs in all catalyzed reactions. However, chain propagation hardly occurs, as the propagating species are preferentially transformed to α-substituted five-membered lactones when the substituents are linked by ester or not sterically hindered. Intramolecular cyclization to form thermodynamically stable five-membered lactones releases alcohols and amines, serving as nucleophiles for the subsequent ring opening of other gCCLs. Thus, apparent chain reactions are realized for continuous consumption of gCCLs. The reaction preference remains unchanged independent of the catalysts, although the reactions of the amide-linked gCCLs by acidic catalysts are slightly mitigated. Finally, copolymerization of CL and a gCCL catalyzed by diphenyl phosphate has been investigated, which enables the chain propagation reaction to yield the linear oligomers of PCL analogues containing up to 16 mol% of gCCL units. This study contributes to understanding the chemistry of ring-opening reactions of substituted lactones for designing functional degradable polymers.
Collapse
Affiliation(s)
- Takayuki Ota
- Graduate School of Science and Engineering, Yamagata University Yamagata 992-8510 Japan
| | - Valentina Montagna
- Graduate School of Organic Materials Science, Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center Avda. Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Yuji Higuchi
- Research Institute for Information Technology, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Haritz Sardon
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center Avda. Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Kazuki Fukushima
- Graduate School of Organic Materials Science, Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Japan Science and Technology Agency (JST), PRESTO 4-1-8 Honcho, Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
5
|
Bhadran A, Shah T, Babanyinah GK, Polara H, Taslimy S, Biewer MC, Stefan MC. Recent Advances in Polycaprolactones for Anticancer Drug Delivery. Pharmaceutics 2023; 15:1977. [PMID: 37514163 PMCID: PMC10385458 DOI: 10.3390/pharmaceutics15071977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Poly(ε-Caprolactone)s are biodegradable and biocompatible polyesters that have gained considerable attention for drug delivery applications due to their slow degradation and ease of functionalization. One of the significant advantages of polycaprolactone is its ability to attach various functionalities to its backbone, which is commonly accomplished through ring-opening polymerization (ROP) of functionalized caprolactone monomer. In this review, we aim to summarize some of the most recent advances in polycaprolactones and their potential application in drug delivery. We will discuss different types of polycaprolactone-based drug delivery systems and their behavior in response to different stimuli, their ability to target specific locations, morphology, as well as their drug loading and release capabilities.
Collapse
Affiliation(s)
- Abhi Bhadran
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Tejas Shah
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Godwin K Babanyinah
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Himanshu Polara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Somayeh Taslimy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
6
|
Yang X, Zhang W, Huang HY, Dai J, Wang MY, Fan HZ, Cai Z, Zhang Q, Zhu JB. Stereoselective Ring-Opening Polymerization of Lactones with a Fused Ring Leading to Semicrystalline Polyesters. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xing Yang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Wei Zhang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Hao-Yi Huang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Jiang Dai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Meng-Yuan Wang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Hua-Zhong Fan
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Zhongzheng Cai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Qi Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Jian-Bo Zhu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| |
Collapse
|
7
|
Sun J, Hong YL, Wang C, Tan ZW, Liu CM. Main-chain/Side-chain type Phosphine Oxide-Containing Reactive Polymers Derived from same Monomer: Controllable RAFT Polymerisation and ring-opening Polycondensation. Polym Chem 2022. [DOI: 10.1039/d2py00006g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper reports the synthesis and selective polymerisations of an epoxy-rich phosphine oxide-containing styrenic monomer, namely 4-vinylbenzyl-bis((oxiran-2-ylmethoxy)methyl) phosphine oxide (VBzBOPO). The styryl and epoxy functionalities could be polymerized independently through...
Collapse
|
8
|
Fan L, Jiang J, Sun Q, Hong K, Cornel EJ, Zhu Y, Du J. Fluorescent homopolypeptide toroids. Polym Chem 2022. [DOI: 10.1039/d1py01691a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Toroids are important ring-like nanostructures in living systems; intrinsically luminogenic toroids are promising in bioimaging but it is challenging to synthesize such nanoparticles. Herein, we report a fluorescent toroid that...
Collapse
|
9
|
Hu S, Yan J, Yang G, Ma C, Yin J. Self-Assembled Polymeric Materials: Design, Morphology, and Functional-Oriented Applications. Macromol Rapid Commun 2021; 43:e2100791. [PMID: 34967061 DOI: 10.1002/marc.202100791] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/15/2021] [Indexed: 11/10/2022]
Abstract
This Review focuses on the current research advances of the synthesis of various amphiphilic block copolymers (ABCs), such as conventional ABCs and newly-presented polyprodrug amphiphiles (PPAs), and the development of corresponding self-assemblies in selective solvents driven by the intermolecular interactions, like noncovalent hydrophobic interactions, π-π interactions, and hydrogen bonds, between ABCs or preformed small polymeric nanoparticles. The design of these assemblies is systematically introduced, and the diverse examples concerning the unique assembly structures along with the fast development of their exclusive properties and various applications in different fields were discussed. Possible perspectives on the existential challenges and glorious future were elucidated finally. We hope this review will provide a convenient way for readers to motivate more evolutional innovative concepts and methods to design next generation of novel polymeric nanoassemblies, and fill the gap between material design and practical applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shoukui Hu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China
| | - Jinhao Yan
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China
| | - Guangwei Yang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China
| | - Chao Ma
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China
| | - Jun Yin
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China
| |
Collapse
|