1
|
Bisht A, Bhowmik S, Patel P, Gupta GD, Kurmi BD. Aptamer as a targeted approach towards treatment of breast cancer. J Drug Target 2024; 32:510-528. [PMID: 38512151 DOI: 10.1080/1061186x.2024.2333866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Aptamers, a novel type of targeted ligand used in drug delivery, have quickly gained popularity due to their high target specificity and affinity. Different aptamer-mediated drug delivery systems, such as aptamer-drug conjugate (ApDC), aptamer-siRNA, and aptamer-functionalised nanoparticle systems, are currently being developed for the successful treatment of cancer based on the excellent properties of aptamers. These systems can decrease potential toxicity and enhance therapeutic efficacy by targeting the drug moiety. In this review, we provide an overview of recent developments in aptamer-mediated delivery systems for cancer therapy, specifically for breast cancer, and talk about the potential applications and current issues of novel aptamer-based techniques. This study in aptamer technology for breast cancer therapy highlights key aptamers targeting well-established biomarkers such as HER2, oestrogen receptor, and progesterone receptor. Additionally, we explore the potential of aptamers in overcoming various challenges such as drug resistance and improving the delivery of therapeutic agents. This review aims to provide a deeper understanding of the present aptamer-based targeted delivery applications through in-depth analysis to increase efficacy and create new therapeutic approaches that may ultimately lead to better treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Anjali Bisht
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, Moga, India
| | | | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, Moga, India
| | | | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| |
Collapse
|
2
|
Bristow P, Schantz K, Moosbrugger Z, Martin K, Liebenberg H, Steimle S, Xiao Q, Percec V, Wilner SE. Aptamer-Targeted Dendrimersomes Assembled from Azido-Modified Janus Dendrimers "Clicked" to DNA. Biomacromolecules 2024; 25:1541-1549. [PMID: 38394608 PMCID: PMC10934268 DOI: 10.1021/acs.biomac.3c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Amphiphilic Janus dendrimers (JDs), synthetic alternatives to lipids, have the potential to expand the scope of nanocarrier delivery systems. JDs self-assemble into vesicles called dendrimersomes, encapsulate both hydrophobic cargo and nucleic acids, and demonstrate enhanced stability in comparison to lipid nanoparticles (LNPs). Here, we report the ability to enhance the cellular uptake of Janus dendrimersomes using DNA aptamers. Azido-modified JDs were synthesized and conjugated to alkyne-modified DNAs using copper-catalyzed azide alkyne cycloaddition. DNA-functionalized JDs form nanometer-sized dendrimersomes in aqueous solution via thin film hydration. These vesicles, now displaying short DNAs, are then hybridized to transferrin receptor binding DNA aptamers. Aptamer-targeted dendrimersomes show improved cellular uptake as compared to control vesicles via fluorescence microscopy and flow cytometry. This work demonstrates the versatility of using click chemistry to conjugate functionalized JDs with biologically relevant molecules and the feasibility of targeting DNA-modified dendrimersomes for drug delivery applications.
Collapse
Affiliation(s)
- Paige Bristow
- Department
of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Kyle Schantz
- Department
of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Zoe Moosbrugger
- Department
of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Kailey Martin
- Department
of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Haley Liebenberg
- Department
of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Stefan Steimle
- Department
of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19014, United States
| | - Qi Xiao
- Roy
& Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19014, United States
| | - Virgil Percec
- Roy
& Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19014, United States
| | - Samantha E. Wilner
- Department
of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
3
|
García-Fernández J, Rivadulla Costa L, Pinto-Díez C, Elena Martín M, González VM, de la Fuente Freire M. Chemical conjugation of aptamer-sphingomyelin nanosystems and their potential as inhibitors of tumour cell proliferation in breast cancer cells. NANOSCALE 2023; 15:19110-19127. [PMID: 37990926 DOI: 10.1039/d3nr03022a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Breast cancer is a complex and heterogeneous disease with a high mortality rate due to non-specific cytotoxicity, low intratumoral accumulation and drug resistance associated with the ineffectiveness of chemotherapy. In recent years, all efforts have been focused on finding new markers and therapeutic targets, protein kinase MNK1b being a promising candidate. Recently, an aptamer known as apMNK2F showed a highly specific interaction with this protein kinase, leading to a significant reduction in tumour cell proliferation, migration and colony formation. However, as aptamers are unable to penetrate the cell membrane and reach the target, these small biomolecules need to be conjugated to suitable vectors that can transport and protect them inside the cells. In this work, covalent conjugation between biocompatible and non-harmful nanoemulsions of vitamin E and sphingomyelin and the aptamer was performed to facilitate intracellular delivery of the therapeutic aptamer apMNK2F. All strategies employed were based on 2-step bioconjugation and optimized to get the simplest and most reproducible vehicle with the highest association efficiency (about 70% in all cases). The ability of the nanosystems to successfully deliver the conjugated therapeutic aptamer was demonstrated and compared to other commercial transfection agents such as Lipofectamine 2000, leading to an effective decrease of breast cancer cell proliferation in the MDA-MB-231 cell line. The proliferation inhibition of the aptamer nanoconjugates compared to the non-conjugated aptamer provides evidence that the antitumoral capacity derived from kinase interaction is improved in a dose-dependent manner. Furthermore, various experiments including cell migration and colony formation assays, along with apoptosis induction experiments, emphasize the significant antitumoral potential. Overall, the obtained results indicate that the developed formulation could be a promising therapy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jenifer García-Fernández
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostel (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, 15706, Spain.
| | - Laura Rivadulla Costa
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostel (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, 15706, Spain.
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, 15782, Spain
| | | | | | - Víctor M González
- Aptus Biotech S.L., Madrid, Spain
- IRYcis-Hospital Ramón y Cajal, Madrid, Spain
| | - María de la Fuente Freire
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostel (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, 15706, Spain.
- Biomedical Research Networking Centre on Oncology (CIBERONC), Madrid, Spain
- DIVERSA Technologies S.L, Santiago de Compostela, Spain
| |
Collapse
|
4
|
Peplau S, Neubert TJ, Balasubramanian K, Polleux J, Börner HG. Statistical Copolymers that Mimic Aspects of Mussel Adhesive Proteins: Access to Robust Adhesive-Domains for Non-Covalent Surface PEGylation. Macromol Rapid Commun 2023; 44:e2300300. [PMID: 37657944 DOI: 10.1002/marc.202300300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Reconstructing functional sequence motifs of proteins, using statistical copolymers greatly reduces the information content, but simplifies synthesis significantly. Key amino acid residues involved in the adhesion of mussel foot proteins are identified. The side-chain functionalities of Dopa, lysine, and arginine are abstracted and incorporated into acrylate monomers to allow controlled radical polymerization. The resulting Dopa-acrylate (Y*-acr), arginine-acrylate (R-acr), and lysine-acrylate (K-acr) monomers are polymerized in different monomer ratios and compositions by reversible addition fragmentation transfer polymerization with a poly(ethylene glycol) (PEG) macrochain transfer agent. This results in two sets of PEG-block-copolymers with statistical mixtures and different monomer ratios of catechol/primary amine and catechol/guanidine side-chain functionalities, both important pairs for mimicking π-cation interactions. The coating behavior of these PEG-block-copolymers is evaluated using quartz crystal microbalance with dissipation energy monitoring (QCM-D), leading to non-covalent PEGylation of the substrates with clear compositional optima in the coating stability and antifouling properties. The coatings prevent non-reversible albumin or serum adsorption, as well as reduce cellular adhesion and fungal spore attachment.
Collapse
Affiliation(s)
- Stefan Peplau
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Tilmann J Neubert
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
- Department of Chemistry, Micro & Nano Analytical Sciences, School of Analytical Sciences Adlershof (SALSA) and IRIS Adlershof, Humboldt-Universität zu Berlin, Albert-Einstein-Str. 5-9, 12489, Berlin, Germany
| | - Kannan Balasubramanian
- Department of Chemistry, Micro & Nano Analytical Sciences, School of Analytical Sciences Adlershof (SALSA) and IRIS Adlershof, Humboldt-Universität zu Berlin, Albert-Einstein-Str. 5-9, 12489, Berlin, Germany
| | - Julien Polleux
- Research & Innovation Unit, Department of Ophthalmic Optics, Health University of Applied Sciences Tyrol, Innrain 98, Innsbruck, 6020, Austria
| | - Hans G Börner
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
5
|
Govindaraju R, Govindaraju S, Yun K, Kim J. Fluorescent-Based Neurotransmitter Sensors: Present and Future Perspectives. BIOSENSORS 2023; 13:1008. [PMID: 38131768 PMCID: PMC10742055 DOI: 10.3390/bios13121008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Neurotransmitters (NTs) are endogenous low-molecular-weight chemical compounds that transmit synaptic signals in the central nervous system. These NTs play a crucial role in facilitating signal communication, motor control, and processes related to memory and learning. Abnormalities in the levels of NTs lead to chronic mental health disorders and heart diseases. Therefore, detecting imbalances in the levels of NTs is important for diagnosing early stages of diseases associated with NTs. Sensing technologies detect NTs rapidly, specifically, and selectively, overcoming the limitations of conventional diagnostic methods. In this review, we focus on the fluorescence-based biosensors that use nanomaterials such as metal clusters, carbon dots, and quantum dots. Additionally, we review biomaterial-based, including aptamer- and enzyme-based, and genetically encoded biosensors. Furthermore, we elaborate on the fluorescence mechanisms, including fluorescence resonance energy transfer, photon-induced electron transfer, intramolecular charge transfer, and excited-state intramolecular proton transfer, in the context of their applications for the detection of NTs. We also discuss the significance of NTs in human physiological functions, address the current challenges in designing fluorescence-based biosensors for the detection of NTs, and explore their future development.
Collapse
Affiliation(s)
- Rajapriya Govindaraju
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Saravanan Govindaraju
- Department of Bio Nanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; (S.G.); (K.Y.)
| | - Kyusik Yun
- Department of Bio Nanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; (S.G.); (K.Y.)
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
6
|
Sinani G, Durgun ME, Cevher E, Özsoy Y. Polymeric-Micelle-Based Delivery Systems for Nucleic Acids. Pharmaceutics 2023; 15:2021. [PMID: 37631235 PMCID: PMC10457940 DOI: 10.3390/pharmaceutics15082021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Nucleic acids can modulate gene expression specifically. They are increasingly being utilized and show huge potential for the prevention or treatment of various diseases. However, the clinical translation of nucleic acids faces many challenges due to their rapid clearance after administration, low stability in physiological fluids and limited cellular uptake, which is associated with an inability to reach the intracellular target site and poor efficacy. For many years, tremendous efforts have been made to design appropriate delivery systems that enable the safe and effective delivery of nucleic acids at the target site to achieve high therapeutic outcomes. Among the different delivery platforms investigated, polymeric micelles have emerged as suitable delivery vehicles due to the versatility of their structures and the possibility to tailor their composition for overcoming extracellular and intracellular barriers, thus enhancing therapeutic efficacy. Many strategies, such as the addition of stimuli-sensitive groups or specific ligands, can be used to facilitate the delivery of various nucleic acids and improve targeting and accumulation at the site of action while protecting nucleic acids from degradation and promoting their cellular uptake. Furthermore, polymeric micelles can be used to deliver both chemotherapeutic drugs and nucleic acid therapeutics simultaneously to achieve synergistic combination treatment. This review focuses on the design approaches and current developments in polymeric micelles for the delivery of nucleic acids. The different preparation methods and characteristic features of polymeric micelles are covered. The current state of the art of polymeric micelles as carriers for nucleic acids is discussed while highlighting the delivery challenges of nucleic acids and how to overcome them and how to improve the safety and efficacy of nucleic acids after local or systemic administration.
Collapse
Affiliation(s)
- Genada Sinani
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Altinbas University, 34147 Istanbul, Türkiye;
| | - Meltem Ezgi Durgun
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34126 Istanbul, Türkiye; (M.E.D.); (E.C.)
| | - Erdal Cevher
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34126 Istanbul, Türkiye; (M.E.D.); (E.C.)
| | - Yıldız Özsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34126 Istanbul, Türkiye; (M.E.D.); (E.C.)
| |
Collapse
|
7
|
Sanjanwala D, Patravale V. Aptamers and nanobodies as alternatives to antibodies for ligand-targeted drug delivery in cancer. Drug Discov Today 2023; 28:103550. [PMID: 36906220 DOI: 10.1016/j.drudis.2023.103550] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/18/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Targeted drug delivery (TDD) is the selective delivery of a therapeutic agent specifically to the site of action to avoid adverse effects and systemic toxicity and to reduce the dose required. Ligand TDD or active TDD involves using a ligand-drug conjugate comprising a targeting ligand linked to an active drug moiety that can either be free or encapsulated within a nanocarrier (NC). Aptamers are single-stranded oligonucleotides that bind to specific biomacromolecules because of their 3D conformation. Nanobodies are the variable domains of unique heavy chain-only antibodies (HcAbs) produced by animals of the Camelidae family. Both these types of ligand are smaller than antibodies and have been used to efficiently target drugs to particular tissues or cells. In this review, we describe the applications of aptamers and nanobodies as ligands for TDD, their advantages and disadvantages compared with antibodies, and the various modalities for targeting cancers using these ligands. Teaser: Aptamers and nanobodies are macromolecular ligands that can actively chaperone drug molecules to particular cancerous cells or tissues in the body to target their pharmacological effects and improve their therapeutic index and safety.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400 019, Maharashtra, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400 019, Maharashtra, India.
| |
Collapse
|
8
|
Fenoy GE, Hasler R, Lorenz C, Movilli J, Marmisollé WA, Azzaroni O, Huskens J, Bäuerle P, Knoll W. Interface Engineering of "Clickable" Organic Electrochemical Transistors toward Biosensing Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10885-10896. [PMID: 36791086 PMCID: PMC9982818 DOI: 10.1021/acsami.2c21493] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
"Clickable" organic electrochemical transistors (OECTs) allow the reliable and straightforward functionalization of electronic devices through the well-known click chemistry toolbox. In this work, we study various aspects of the click chemistry-based interface engineering of "clickable" OECTs. First, different channel architectures are investigated, showing that PEDOT-N3 films can properly work as a channel of the transistors. Furthermore, the Cu(I)-catalyzed click reaction of ethynyl-ferrocene is studied under different reaction conditions, endowing the spatial control of the functionalization. The strain-promoted and catalyst-free cycloaddition of a dibenzocyclooctyne-derivatized poly-l-lysine (PLL-DBCO) is also performed on the OECTs and validated by a fiber optic (FO)-SPR setup. The further immobilization of an azido-modified HD22 aptamer yields OECT-based biosensors that are employed for the recognition of thrombin. Finally, their performance is evaluated against previously reported architectures, showing higher density of the immobilized HD22 aptamer, and originating similar KD values and higher maximum signal change upon analyte recognition.
Collapse
Affiliation(s)
- Gonzalo E. Fenoy
- AIT
Austrian Institute of Technology GmbH, Konrad-Lorenz Strasse 24, 3430 Tulln an der Donau, Austria
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)—CONICET, 64 and 113, 1900 La Plata, Argentina
| | - Roger Hasler
- AIT
Austrian Institute of Technology GmbH, Konrad-Lorenz Strasse 24, 3430 Tulln an der Donau, Austria
| | - Christoph Lorenz
- Institute
for Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jacopo Movilli
- Department
of Molecules & Materials, MESA+ Institute, Faculty of Science
and Technology, University of Twente, P.O. Box 217, AE 7500 Enschede, The Netherlands
| | - Waldemar A. Marmisollé
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)—CONICET, 64 and 113, 1900 La Plata, Argentina
| | - Omar Azzaroni
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)—CONICET, 64 and 113, 1900 La Plata, Argentina
- CEST-UNLP
Partner Lab for Bioelectronics (INIFTA), Diagonal 64 y 113, 1900 La Plata, Argentina
| | - Jurriaan Huskens
- Department
of Molecules & Materials, MESA+ Institute, Faculty of Science
and Technology, University of Twente, P.O. Box 217, AE 7500 Enschede, The Netherlands
| | - Peter Bäuerle
- Institute
for Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Wolfgang Knoll
- AIT
Austrian Institute of Technology GmbH, Konrad-Lorenz Strasse 24, 3430 Tulln an der Donau, Austria
- Danube
Private
University, Steiner Landstrasse
124, 3500 Krems, Austria
| |
Collapse
|
9
|
Rizzuto FJ, Dore MD, Rafique MG, Luo X, Sleiman HF. DNA Sequence and Length Dictate the Assembly of Nucleic Acid Block Copolymers. J Am Chem Soc 2022; 144:12272-12279. [PMID: 35762655 DOI: 10.1021/jacs.2c03506] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The self-assembly of block copolymers is often rationalized by structure and microphase separation; pathways that diverge from this parameter space may provide new mechanisms of polymer assembly. Here, we show that the sequence and length of single-stranded DNA directly influence the self-assembly of sequence-defined DNA block copolymers. While increasing the length of DNA led to predictable changes in self-assembly, changing only the sequence of DNA produced three distinct structures: spherical micelles (spherical nucleic acids, SNAs) from flexible poly(thymine) DNA, fibers from semirigid mixed-sequence DNA, and networked superstructures from rigid poly(adenine) DNA. The secondary structure of poly(adenine) DNA strands drives a temperature-dependent polymerization and assembly mechanism: copolymers stored in an SNA reservoir form fibers after thermal activation, which then aggregate upon cooling to form interwoven networks. DNA is often used as a programming code that aids in nanostructure addressability and function. Here, we show that the inherent physical and chemical properties of single-stranded DNA sequences also make them an ideal material to direct self-assembled morphologies and select for new methods of supramolecular polymerization.
Collapse
Affiliation(s)
- Felix J Rizzuto
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC H3A 08B, Canada
| | - Michael D Dore
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC H3A 08B, Canada
| | | | - Xin Luo
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC H3A 08B, Canada
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC H3A 08B, Canada
| |
Collapse
|
10
|
Rothenbühler S, Gonzalez A, Iacovache I, Langenegger SM, Zuber B, Häner R. Tetraphenylethylene-DNA conjugates: influence of sticky ends and DNA sequence length on the supramolecular assembly of AIE-active vesicles. Org Biomol Chem 2022; 20:3703-3707. [PMID: 35262542 PMCID: PMC9092531 DOI: 10.1039/d2ob00357k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The supramolecular assembly of DNA conjugates, functionalized with tetraphenylethylene (TPE) sticky ends, into vesicular structures is described. The aggregation-induced emission (AIE) active TPE units allow monitoring the assembly process by fluorescence spectroscopy. The number of TPE modifications in the overhangs of the conjugates influences the supramolecular assembly behavior. A minimum of two TPE residues on each end are required to ensure a well-defined assembly process. The design of the presented DNA-based nanostructures offers tailored functionalization with applications in DNA nanotechnology. The supramolecular assembly of tetraphenylethylene (TPE)–DNA conjugates is presented. The length of the TPE sticky ends exerts a pronounced effect on the formation of aggregation-induced emission (AIE)-active vesicles.![]()
Collapse
Affiliation(s)
- Simon Rothenbühler
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | - Adrian Gonzalez
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | - Ioan Iacovache
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012 Bern, Switzerland
| | - Simon M Langenegger
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012 Bern, Switzerland
| | - Robert Häner
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| |
Collapse
|
11
|
Inam AKMS, Angeli MAC, Douaki A, Shkodra B, Lugli P, Petti L. An Aptasensor Based on a Flexible Screen-Printed Silver Electrode for the Rapid Detection of Chlorpyrifos. SENSORS 2022; 22:s22072754. [PMID: 35408368 PMCID: PMC9003324 DOI: 10.3390/s22072754] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
Abstract
In this work, we propose a novel disposable flexible and screen-printed electrochemical aptamer-based sensor (aptasensor) for the rapid detection of chlorpyrifos (CPF). To optimize the process, various characterization procedures were employed, including Fourier transform infrared spectroscopy (FT-IR), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). Initially, the aptasensor was optimized in terms of electrolyte pH, aptamer concentration, and incubation time for chlorpyrifos. Under optimal conditions, the aptasensor showed a wide linear range from 1 to 105 ng/mL with a calculated limit of detection as low as 0.097 ng/mL and sensitivity of 600.9 µA/ng. Additionally, the selectivity of the aptasensor was assessed by identifying any interference from other pesticides, which were found to be negligible (with a maximum standard deviation of 0.31 mA). Further, the stability of the sample was assessed over time, where the reported device showed high stability over a period of two weeks at 4 °C. As the last step, the ability of the aptasensor to detect chlorpyrifos in actual samples was evaluated by testing it on banana and grape extracts. As a result, the device demonstrated sufficient recovery rates, which indicate that it can find application in the food industry.
Collapse
Affiliation(s)
- A. K. M. Sarwar Inam
- Sensing Technologies Laboratory, Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (A.K.M.S.I.); (A.D.); (B.S.); (P.L.); (L.P.)
- Department of Nutrition and Food Engineering, Daffodil International University, Dhaka 1207, Bangladesh
| | - Martina Aurora Costa Angeli
- Sensing Technologies Laboratory, Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (A.K.M.S.I.); (A.D.); (B.S.); (P.L.); (L.P.)
- Correspondence:
| | - Ali Douaki
- Sensing Technologies Laboratory, Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (A.K.M.S.I.); (A.D.); (B.S.); (P.L.); (L.P.)
| | - Bajramshahe Shkodra
- Sensing Technologies Laboratory, Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (A.K.M.S.I.); (A.D.); (B.S.); (P.L.); (L.P.)
| | - Paolo Lugli
- Sensing Technologies Laboratory, Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (A.K.M.S.I.); (A.D.); (B.S.); (P.L.); (L.P.)
| | - Luisa Petti
- Sensing Technologies Laboratory, Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (A.K.M.S.I.); (A.D.); (B.S.); (P.L.); (L.P.)
| |
Collapse
|
12
|
Rothenbühler S, Iacovache I, Langenegger SM, Zuber B, Häner R. Complex DNA Architectonics─Self-Assembly of Amphiphilic Oligonucleotides into Ribbons, Vesicles, and Asterosomes. Bioconjug Chem 2022; 34:70-77. [PMID: 35357155 PMCID: PMC9854621 DOI: 10.1021/acs.bioconjchem.2c00077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The precise arrangement of structural subunits is a key factor for the proper shape and function of natural and artificial supramolecular assemblies. In DNA nanotechnology, the geometrically well-defined double-stranded DNA scaffold serves as an element of spatial control for the precise arrangement of functional groups. Here, we describe the supramolecular assembly of chemically modified DNA hybrids into diverse types of architectures. An amphiphilic DNA duplex serves as the sole structural building element of the nanosized supramolecular structures. The morphology of the assemblies is governed by a single subunit of the building block. The chemical nature of this subunit, i.e., polyethylene glycols of different chain length or a carbohydrate moiety, exerts a dramatic influence on the architecture of the assemblies. Cryo-electron microscopy revealed the arrangement of the individual DNA duplexes within the different constructs. Thus, the morphology changes from vesicles to ribbons with increasing length of a linear polyethylene glycol. Astoundingly, attachment of a N-acetylgalactosamine carbohydrate to the DNA duplex moiety produces an unprecedented type of star-shaped architecture. The novel DNA architectures presented herein imply an extension of the current concept of DNA materials and shed new light on the fast-growing field of DNA nanotechnology.
Collapse
Affiliation(s)
- Simon Rothenbühler
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Ioan Iacovache
- Institute
of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012 Bern, Switzerland
| | - Simon M. Langenegger
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Benoît Zuber
- Institute
of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012 Bern, Switzerland
| | - Robert Häner
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland,
| |
Collapse
|
13
|
Roszak I, Oswald L, Al Ouahabi A, Bertin A, Laurent E, Felix O, Carvin-Sergent I, Charles L, Lutz JF. Synthesis and sequencing of informational poly(amino phosphodiester)s. Polym Chem 2021. [DOI: 10.1039/d1py01052b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The inclusion of main-chain tertiary amines in digital poly(phosphodiester)s allows synthesis of molecularly-defined achiral polymers and simplifies tandem mass spectrometry sequencing.
Collapse
Affiliation(s)
- Ian Roszak
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | - Laurence Oswald
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | - Abdelaziz Al Ouahabi
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | - Annabelle Bertin
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
- BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany
- Institute of Chemistry and Biochemistry − Organic Chemistry, Free University Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Eline Laurent
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | - Olivier Felix
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | - Isaure Carvin-Sergent
- Aix Marseille Université, CNRS, UMR 7273, Institute of Radical Chemistry, 13397, Marseille Cedex 20, France
| | - Laurence Charles
- Aix Marseille Université, CNRS, UMR 7273, Institute of Radical Chemistry, 13397, Marseille Cedex 20, France
| | - Jean-François Lutz
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| |
Collapse
|