1
|
Yang GW, Xie R, Zhang YY, Xu CK, Wu GP. Evolution of Copolymers of Epoxides and CO 2: Catalysts, Monomers, Architectures, and Applications. Chem Rev 2024. [PMID: 39454031 DOI: 10.1021/acs.chemrev.4c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
The copolymerization of CO2 and epoxides presents a transformative approach to converting greenhouse gases into aliphatic polycarbonates (CO2-PCs), thereby reducing the polymer industry's dependence on fossil resources. Over the past 50 years, a wide array of metallic catalysts, both heterogeneous and homogeneous, have been developed to achieve precise control over polymer selectivity, sequence, regio-, and stereoselectivity. This review details the evolution of metal-based catalysts, with a particular focus on the emergence of organoborane catalysts, and explores how these catalysts effectively address kinetic and thermodynamic challenges in CO2/epoxides copoly2merization. Advances in the synthesis of CO2-PCs with varied sequence and chain architectures through diverse polymerization protocols are examined, alongside the applications of functional CO2-PCs produced by incorporating different epoxides. The review also underscores the contributions of computational techniques to our understanding of copolymerization mechanisms and highlights recent advances in the closed-loop chemical recycling of CO2-sourced polycarbonates. Finally, the industrialization efforts of CO2-PCs are discussed, offering readers a comprehensive understanding of the evolution and future potential of epoxide copolymerization with CO2.
Collapse
Affiliation(s)
- Guan-Wen Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Rui Xie
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yao-Yao Zhang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Cheng-Kai Xu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Guang-Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
2
|
Wei P, Bhat GA, Darensbourg DJ. Enabling New Approaches: Recent Advances in Processing Aliphatic Polycarbonate-Based Materials. Angew Chem Int Ed Engl 2023; 62:e202307507. [PMID: 37534963 DOI: 10.1002/anie.202307507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
Aliphatic polycarbonates (aPCs) have become increasingly popular as functional materials due to their biocompatibility and capacity for on-demand degradation. Advances in polymerization techniques and the introduction of new functional monomers have expanded the library of aPCs available, offering a diverse range of chemical compositions and structures. To accommodate the emerging requirements of new applications in biomedical and energy-related fields, various manufacturing techniques have been adopted for processing aPC-based materials. However, a summary of these techniques has yet to be conducted. The aim of this paper is to enrich the toolbox available to researchers, enabling them to select the most suitable technique for their materials. In this paper, a concise review of the recent progress in processing techniques, including controlled self-assembly, electrospinning, additive manufacturing, and other techniques, is presented. We also highlight the specific challenges and opportunities for the sustainable growth of this research area and the successful integration of aPCs in industrial applications.
Collapse
Affiliation(s)
- Peiran Wei
- Soft Matter Facility, Texas A&M University, 1313 Research Parkway, College Station, TX, 77845, USA
| | - Gulzar A Bhat
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Donald J Darensbourg
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX, 77843, USA
| |
Collapse
|
3
|
Hardy C, Levere ME, Kociok-Köhn G, Buchard A. Radical Ring Opening Polymerization of Cyclic Ketene Acetals Derived From d-Glucal. ACS Macro Lett 2023; 12:1443-1449. [PMID: 37824416 PMCID: PMC10666543 DOI: 10.1021/acsmacrolett.3c00397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
A cyclic ketene acetal (CKA) derived from d-glucal was synthesized, and its polymerization using free radicals has been investigated. NMR analysis of the resulting polymers revealed the formation of polyacetal-polyester copolymers, with up to 78% of ester linkages formed by radical ring-opening polymerization (rROP). Conversely, the polymerization of the monomer-saturated analogue only produced acetal linkages, demonstrating that the alkene functionality within the d-glucal pyranose ring is essential to promote ring-opening and ester formation, likely via the stabilization of an allyl radical. The thermal properties of the polymers were linked to the ratio of the ester and acetal linkages. Copolymerization with methyl methacrylate (MMA) afforded statistically PMMA-rich copolymers (66-98%) with linkages prone to hydrolytic degradation and decreased glass-transition temperatures. The retention of the pseudoglucal alkene function offers opportunities to functionalize further these bioderived (co)polymers.
Collapse
Affiliation(s)
- Craig Hardy
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Martin E. Levere
- Materials
and Chemical Characterisation Facility (MC), University of Bath, Claverton Down, Bath, BA2 7AY, United
Kingdom
| | - Gabriele Kociok-Köhn
- Materials
and Chemical Characterisation Facility (MC), University of Bath, Claverton Down, Bath, BA2 7AY, United
Kingdom
| | - Antoine Buchard
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
- University
of Bath Institute for Sustainability, Claverton Down, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
4
|
Tran D, Braaksma AN, Andras AM, Boopathi SK, Darensbourg DJ, Wooley KL. Structural Metamorphoses of d-Xylose Oxetane- and Carbonyl Sulfide-Based Polymers In Situ during Ring-Opening Copolymerizations. J Am Chem Soc 2023; 145:18560-18567. [PMID: 37578470 PMCID: PMC10863053 DOI: 10.1021/jacs.3c05529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 08/15/2023]
Abstract
Polymers constructed from copolymerizations of carbohydrates with C1 feedstocks are promising targets that provide transformation of sustainably sourced building blocks into next-generation, environmentally degradable plastic materials. In this work, the initial intention was to expand beyond polycarbonates prepared by the copolymerization of oxetanes derived from d-xylose with CO2 and incorporate sulfur atoms through the establishment of monothiocarbonates that would provide the ability to modulate the backbone compositions and result in unique effects upon the chemical, physical, and mechanical properties. Therefore, the syntheses of poly(1,2-O-isopropylidene-α-d-xylofuranose monothiocarbonate)s were investigated by ring-opening copolymerizations of 3,5-anhydro-1,2-O-isopropylidene-α-d-xylofuranose with carbonyl sulfide (COS) facilitated by (salen)CrCl/cocatalyst systems. Unexpectedly, when copolymerization temperatures exceeded 40 °C, oxygen/sulfur exchange reactions occurred, causing in situ dynamic backbone restructuring through a series of inter-related and complex mechanistic pathways that transformed monothiocarbonate monomeric repeating units into carbonate and thioether dimeric repeating units. These backbone structural compositional transformations were investigated through a combination of Fourier transform infrared and nuclear magnetic resonance spectroscopic techniques and were demonstrated to be easily tuned via temperature and catalyst/cocatalyst stoichiometries. Furthermore, the regiochemistries of these d-xylose-based sulfur-containing polymers revealed that monothiocarbonate monomeric repeating units had a head-to-tail connectivity, while the carbonate and thioether dimeric repeating units had dual head-to-head and tail-to-tail connectivities. These sulfur-containing polymers exhibited enhanced thermal stabilities compared to their oxygen-containing polycarbonate analogues and revealed variations in the effects upon glass transition temperatures, demonstrating the effect of sulfur incorporation in the polymer backbone. These findings contribute to the advancement of sustainable polymer production by using feedstocks of natural origin coupled with COS.
Collapse
Affiliation(s)
- David
K. Tran
- Departments
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Ashley N. Braaksma
- Departments
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Autumn M. Andras
- Departments
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Senthil K. Boopathi
- Departments
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Donald J. Darensbourg
- Departments
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Karen L. Wooley
- Departments
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
- Materials
Science & Engineering, Texas A&M
University, College
Station, Texas 77842, United States
- Chemical
Engineering, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
5
|
Maeda C, Inoue H, Ichiki A, Okihara T, Ema T. Synthesis of Trimethylene Carbonates and Polycarbonates from Oxetanes and CO 2 Using Bifunctional Aluminum Porphyrin Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chihiro Maeda
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Hina Inoue
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Ayano Ichiki
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Takumi Okihara
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| |
Collapse
|
6
|
Qiao C, Villar-Yanez A, Garay-Ruiz D, Buchholz JB, Bo C, Kleij AW. Domino Synthesis of Bicyclic 3,5-Anhydro Furanose Mimics Using a Binary Al(III) Complex/Halide Catalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chang Qiao
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Universitat Rovira i Virgili (URV), Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Departament de Química Física i Inorgánica, Universitat Rovira i Virgili (URV), Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Alba Villar-Yanez
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Universitat Rovira i Virgili (URV), Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Departament de Química Física i Inorgánica, Universitat Rovira i Virgili (URV), Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Diego Garay-Ruiz
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Universitat Rovira i Virgili (URV), Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Departament de Química Física i Inorgánica, Universitat Rovira i Virgili (URV), Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Jordi-Benet Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Universitat Rovira i Virgili (URV), Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Departament de Química Física i Inorgánica, Universitat Rovira i Virgili (URV), Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Arjan W. Kleij
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
7
|
Scholten PBV, Figueirêdo MB. Back to the Future with Biorefineries: Bottom‐Up and Top‐Down Approaches toward Polymers and Monomers. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Philip B. V. Scholten
- Bloom Biorenewables Route de l'Ancienne Papeterie 106 Case postal 146 Marly 1723 Switzerland
| | - Monique B. Figueirêdo
- Bloom Biorenewables Route de l'Ancienne Papeterie 106 Case postal 146 Marly 1723 Switzerland
| |
Collapse
|
8
|
de la Cruz-Martínez F, Castro-Osma JA, Lara-Sánchez A. Catalytic synthesis of bio-sourced organic carbonates and sustainable hybrid materials from CO2. ADVANCES IN CATALYSIS 2022. [DOI: 10.1016/bs.acat.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|