1
|
Lunin AO, Andreyanov FA, Makarov IS, Bermeshev MV. Vinyl-Addition Homopolymeization of Norbornenes with Bromoalkyl Groups. Polymers (Basel) 2023; 15:4444. [PMID: 38006171 PMCID: PMC10674773 DOI: 10.3390/polym15224444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Vinyl-addition polynorbornenes are of great interest as versatile templates for the targeted design of polymer materials with desired properties. These polymers possess rigid and saturated backbones, which provide them with high thermal and chemical stability as well as high glass transition temperatures. Vinyl-addition polymers from norbornenes with bromoalkyl groups are widely used as precursors of anion exchange membranes; however, high-molecular-weight homopolymers from such monomers are often difficult to prepare. Herein, we report the systematic study of vinyl-addition polymerization of norbornenes with various bromoalkyl groups on Pd-catalysts bearing N-heterocyclic carbene ligands ((NHC)Pd-systems). Norbornenes with different lengths of hydrocarbon linker (one, two, and four CH2 groups) between the bicyclic norbornene moiety and the bromine atom were used as model monomers, while single- and three-component (NHC)Pd-systems were applied as catalysts. In vinyl-addition polymerization, the reactivity of the investigated monomers varied substantially. The relative reactivity of these monomers was assessed in copolymerization experiments, which showed that the closer the bromine is to the norbornene double-bond, the lower the monomer's reactivity. The most reactive monomer was the norbornene derivative with the largest substituent (with the longest linker). Tuning the catalyst's nature and the conditions of polymerization, we succeeded in synthesizing high-molecular-weight homopolymers from norbornenes with bromoalkyl groups (Mn up to 1.4 × 106). The basic physico-chemical properties of the prepared polymers were studied and considered together with the results of vinyl-addition polymerization.
Collapse
Affiliation(s)
| | | | | | - Maxim V. Bermeshev
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy Pr., 119991 Moscow, Russia; (A.O.L.); (F.A.A.); (I.S.M.)
| |
Collapse
|
2
|
Nazarov IV, Khrychikova AP, Medentseva EI, Bermesheva EV, Borisov IL, Yushkin AA, Volkov AV, Wozniak AI, Petukhov DI, Topchiy MA, Asachenko AF, Ren XK, Bermeshev MV. CO2-selective vinyl-addition polymers from nadimides: Synthesis and performance for membrane gas separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
3
|
Nazarov IV, Zarezin DP, Solomatov IA, Danshina AA, Nelyubina YV, Ilyasov IR, Bermeshev MV. Chiral Polymers from Norbornenes Based on Renewable Chemical Feedstocks. Polymers (Basel) 2022; 14:polym14245453. [PMID: 36559820 PMCID: PMC9786787 DOI: 10.3390/polym14245453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/28/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Optically active polymers are of great interest as materials for dense enantioselective membranes, as well as chiral stationary phases for gas and liquid chromatography. Combining the versatility of norbornene chemistry and the advantages of chiral natural terpenes in one molecule will open up a facile route toward the synthesis of diverse optically active polymers. Herein, we prepared a set of new chiral monomers from cis-5-norbornene-2,3-dicarboxylic anhydride and chiral alcohols of various natures. Alcohols based on cyclic terpenes ((-)-menthol, (-)-borneol and pinanol), as well as commercially available alcohols (S-(-)-2-methylbutanol-1, S-(+)-3-octanol), were used. All the synthesized monomers were successfully involved in ring-opening metathesis polymerization, affording polymers in high yields (up to 96%) and with molecular weights in the range of 1.9 × 105-5.8 × 105 (Mw). The properties of the metathesis polymers obtained were studied by TGA and DSC analysis, WAXD, and circular dichroism spectroscopy. The polymers exhibited high thermal stability and good film-forming properties. Glass transition temperatures for the prepared polymers varied from -30 °C to +139 °C and, therefore, the state of the polymers changed from rubbery to glassy. The prepared polymers represent a new attractive platform of chiral polymeric materials for enantioselective membrane separation and chiral stationary phases for chromatography.
Collapse
Affiliation(s)
- Ivan V. Nazarov
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy Pr., 119991 Moscow, Russia
| | - Danil P. Zarezin
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy Pr., 119991 Moscow, Russia
| | - Ivan A. Solomatov
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy Pr., 119991 Moscow, Russia
| | - Anastasya A. Danshina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Institutskiy Per., 9, 141700 Dolgoprudny, Russia
| | - Yulia V. Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia
| | - Igor R. Ilyasov
- Nelubin Institute of Pharmacy, Sechenov First Moscow State Medical University, Trubetskaya Str. 8/2, 119991 Moscow, Russia
| | - Maxim V. Bermeshev
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy Pr., 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-495-647-59-27 (ext. 379)
| |
Collapse
|
4
|
Bermesheva EV, Medentseva EI, Khrychikova AP, Wozniak AI, Guseva MA, Nazarov IV, Morontsev AA, Karpov GO, Topchiy MA, Asachenko AF, Danshina AA, Nelyubina YV, Bermeshev MV. Air-Stable Single-Component Pd-Catalysts for Vinyl-Addition Polymerization of Functionalized Norbornenes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Evgeniya V. Bermesheva
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
- I.M. Sechenov First Moscow State Medical University, Trubetskaya str., 8, building 2, Moscow 119991, Russia
| | - Ekaterina I. Medentseva
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Anna P. Khrychikova
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
- D.I. Mendeleyev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow 125047, Russia
| | - Alyona I. Wozniak
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Marina A. Guseva
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Ivan V. Nazarov
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Alexander A. Morontsev
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Gleb O. Karpov
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Maxim A. Topchiy
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Andrey F. Asachenko
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Anastasia A. Danshina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russia
- Moscow Institute of Physics and Technology (National Research University), Institutskiy per., 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Yulia V. Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russia
| | - Maxim V. Bermeshev
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| |
Collapse
|