1
|
Yin N, Wang X, Shu Y, Wang J. A "turn-on" polymer nanothermometer based on aggregation induced emission for intracellular temperature sensing. J Colloid Interface Sci 2024; 679:519-528. [PMID: 39467363 DOI: 10.1016/j.jcis.2024.10.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Temperature measurements at the nanoscale facilitate the understanding of physiological processes related to heat in cells. Herein, we prepare a tetraphenylethylene-functionalized fluorophore (TPPEBr) with dual characteristics of twisted intramolecular charge transfer (TICT) and aggregation induced emission (AIE). It is polymerized with a thermo-responsive unit NIPAM to construct a fluorescent polymer nanothermometer (PNIPAM-TPPEBr). The phase transition behavior of PNIPAM from dispersed chains to dense spheres in aqueous media promotes the aggregation of TPPEBr fluorophores, which makes the fluorescence of PNIPAM-TPPEBr enhance with increasing temperature. Furthermore, the phase transition of PNIPAM is accompanied by a significant decrease in the polarity of the microenvironment, resulting in a blue shift in the emission wavelength of TPPEBr. Varying the ratio of NIPAM and TPPEBr can regulate the thermo-responsiveness of PNIPAM-TPPEBr in the physiological temperature range (31-38 °C), and the maximum relative thermal sensitivity reaches 13.2 % °C-1. The thermo-responsive performance of this nanothermometer is independent of the intracellular microenvironment, and it is successfully applied in the temperature imaging of A549 cells. Under the stimulation of ionomycin and oxidative phosphorylation inhibitor, the cell temperature increased by ca. 1.5 °C and ca. 1.0 °C, respectively.
Collapse
Affiliation(s)
- Nana Yin
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xiaojuan Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
2
|
Bisht AS, Kumari A, Meena A, Roy RK. Understanding Polyproline's Unusual Thermoresponsive Properties Using a Polyproline-Based Double Hydrophilic Block Copolymer. Biomacromolecules 2024. [PMID: 39413421 DOI: 10.1021/acs.biomac.4c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Polyproline is a unique thermoresponsive polymer characterized by large thermal and conformational hysteresis. This article employs polyproline-based double hydrophilic block copolymers (PNIPAMn-b-PLPm) to gain insight into polyproline's thermoresponsive mechanism. The amine-terminated poly(N-isopropylacrylamide) (NH2-PNIPAMm) was used as the macroinitiator for ring-opening polymerization of proline-NCA monomers, resulting in various block copolymers (PNIPAMn-b-PLPm) with varying PLP block lengths. Block copolymers' thermal phase transitions were compared with their homopolymer counterparts using turbidimetry, variable-temperature NMR, dynamic light scattering, and circular dichroism spectroscopy. These experiments revealed that regardless of their compositions, all block copolymers exhibited a two-stage collapse (TCP(PLP) > TCP(PNIPAM)) during the heating cycle. In contrast, only one clearing temperature (TCL) was observed during cooling. The observed clearing temperature is closely correlated to the clearing temperature of PNIPAM blocks, suggesting the role of water-soluble PNIPAM blocks in resolving the PLP blocks. Moreover, thermal and conformational hysteresis related to the polyproline block is significantly suppressed in the presence of a PNIPAM block. Linking PNIPAM blocks has two significant effects on PLP segments' thermoresponsive behavior. For example, during the heating cycle, the precollapsed PNIPAM chains (as TCP(PNIPAM) < TCP(PLP)) prevent orderly aggregation within the PLP block. Meanwhile, during the cooling cycle below the clearing temperature of the PNIPAM block, the PNIPAM chains impart water solubility (as TCL(PNIPAM) > TCL(PLP)) to the collapsed PLP chains. Overall, the PNIPAM block imparts water solubility and perturbs PLP chains to form the native aggregate structure, suppressing the hysteresis effect. Accordingly, the large thermal and conformational hysteresis associated with native PLP chains appears to result from a noninterfering aggregation above the critical temperature.
Collapse
Affiliation(s)
- Arjun Singh Bisht
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Sector 81, SAS Nagar, Manauli, Punjab 140 306, India
| | - Ankita Kumari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Sector 81, SAS Nagar, Manauli, Punjab 140 306, India
| | - Ankita Meena
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Sector 81, SAS Nagar, Manauli, Punjab 140 306, India
| | - Raj Kumar Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Sector 81, SAS Nagar, Manauli, Punjab 140 306, India
| |
Collapse
|
3
|
Fu X, Wang Y, Xu L, Narumi A, Sato SI, Yang X, Shen X, Kakuchi T. Thermoresponsive Property of Poly( N, N-bis(2-methoxyethyl)acrylamide) and Its Copolymers with Water-Soluble Poly( N, N-disubstituted acrylamide) Prepared Using Hydrosilylation-Promoted Group Transfer Polymerization. Polymers (Basel) 2023; 15:4681. [PMID: 38139932 PMCID: PMC10747282 DOI: 10.3390/polym15244681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The group-transfer polymerization (GTP) of N,N-bis(2-methoxyethyl)acrylamide (MOEAm) initiated by Me2EtSiH in the hydrosilylation-promoted method and by silylketene acetal (SKA) in the conventional method proceeded in a controlled/living manner to provide poly(N,N-bis(2-methoxyethyl)acrylamide) (PMOEAm) and PMOEAm with the SKA residue at the α-chain end (MCIP-PMOEAm), respectively. PMOEAm-b-poly(N,N-dimethylacrylamide) (PDMAm) and PMOEAm-s-PDMAm and PMOEAm-b-poly(N,N-bis(2-ethoxyethyl)acrylamide) (PEOEAm) and PMOEAm-s-PEOEAm were synthesized by the block and random group-transfer copolymerization of MOEAm and N,N-dimethylacrylamide or N,N-bis(2-ethoxyethyl)acrylamide. The homo- and copolymer structures affected the thermoresponsive properties; the cloud point temperature (Tcp) increasing by decreasing the degree of polymerization (x). The chain-end group in PMOEAm affected the Tcp with PMOEAmx > MCIP-PMOEAmx. The Tcp of statistical copolymers was higher than that of block copolymers, with PMOEAmx-s-PDMAmy > PMOEAmx-b-PDMAmy and PMOEAmx-s-PEOEAmy > PMOEAmx-b-PEOEAmy.
Collapse
Affiliation(s)
- Xiangming Fu
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
| | - Yanqiu Wang
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
| | - Liang Xu
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
| | - Atsushi Narumi
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan;
| | - Shin-ichiro Sato
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan;
| | - Xiaoran Yang
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
| | - Xiande Shen
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
- Chongqing Research Institute, Changchun University of Science and Technology, No. 618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing 401135, China
| | - Toyoji Kakuchi
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan;
- Chongqing Research Institute, Changchun University of Science and Technology, No. 618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing 401135, China
| |
Collapse
|
4
|
Nan Z, Liu H, Shi L, Zhu H, Chen J, Ilovitsh T, Wu D, Wan M, Feng Y. Ratiometric Fluorescent Detection of Ultrasound-Regulated ATP Release: An Ultrasound-Resistant Cu,N-Doped Carbon Nanosphere. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37365929 DOI: 10.1021/acsami.3c05720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Focused ultrasound, as a protocol of cancer therapy, might induce extracellular adenosine triphosphate (ATP) release, which could enhance cancer immunotherapy and be monitored as a therapeutic marker. To achieve an ATP-detecting probe resistant to ultrasound irradiation, we constructed a Cu/N-doped carbon nanosphere (CNS), which has two fluorescence (FL) emissions at 438 and 578 nm to detect ultrasound-regulated ATP release. The addition of ATP to Cu/N-doped CNS was conducted to recover the FL intensity at 438 nm, where ATP enhanced the FL intensity probably via intramolecular charge transfer (ICT) primarily and hydrogen-bond-induced emission (HBIE) secondarily. The ratiometric probe was sensitive to detect micro ATP (0.2-0.6 μM) with the limit of detection (LOD) of 0.068 μM. The detection of ultrasound-regulated ATP release by Cu,N-CNS/RhB showed that ATP release was enhanced by the long-pulsed ultrasound irradiation at 1.1 MHz (+37%, p < 0.01) and reduced by the short-pulsed ultrasound irradiation at 5 MHz (-78%, p < 0.001). Moreover, no significant difference in ATP release was detected between the control group and the dual-frequency ultrasound irradiation group (+4%). It is consistent with the results of ATP detection by the ATP-kit. Besides, all-ATP detection was developed to prove that the CNS had ultrasound-resistant properties, which means it could bear the irradiation of focused ultrasound in different patterns and detect all-ATP in real time. In the study, the ultrasound-resistant probe has the advantages of simple preparation, high specificity, low limit of detection, good biocompatibility, and cell imaging ability. It has great potential to act as a multifunctional ultrasound theranostic agent for simultaneous ultrasound therapy, ATP detection, and monitoring.
Collapse
Affiliation(s)
- Zhezhu Nan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hengyu Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Linrong Shi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hongrui Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Junjie Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Tali Ilovitsh
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daocheng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yi Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
5
|
Ma C, Han T, Efstathiou S, Marathianos A, Houck HA, Haddleton DM. Aggregation-Induced Emission Poly(meth)acrylates for Photopatterning via Wavelength-Dependent Visible-Light-Regulated Controlled Radical Polymerization in Batch and Flow Conditions. Macromolecules 2022; 55:9908-9917. [DOI: 10.1021/acs.macromol.2c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/04/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Congkai Ma
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ting Han
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Spyridon Efstathiou
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Arkadios Marathianos
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Hannes A. Houck
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - David M. Haddleton
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
6
|
Yang FH, Hao B, Yue X, Ma PC. Fluorescent and stimuli-responsive performance of polymer composites filled with tetraphenylethene derivatives. Polym Chem 2022. [DOI: 10.1039/d2py00396a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a series of tetraphenylethene (TPE) derivatives with 3-butenloxy moieties were synthesized. The developed TPE with different number of substituent groups showed controlled aggregation-induced emission performance and variable...
Collapse
|