1
|
Ballai G, Kotnik T, Finšgar M, Pintar A, Kónya Z, Sápi A, Kovačič S. Highly Porous Polymer Beads Coated with Nanometer-Thick Metal Oxide Films for Photocatalytic Oxidation of Bisphenol A. ACS APPLIED NANO MATERIALS 2023; 6:20089-20098. [PMID: 38026613 PMCID: PMC10653210 DOI: 10.1021/acsanm.3c03891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
Highly porous metal oxide-polymer nanocomposites are attracting considerable interest due to their unique structural and functional features. A porous polymer matrix brings properties such as high porosity and permeability, while the metal oxide phase adds functionality. For the metal oxide phase to perform its function, it must be fully accessible, and this is possible only at the pore surface, but functioning surfaces require controlled engineering, which remains a challenge. Here, highly porous nanocomposite beads based on thin metal oxide nanocoatings and polymerized high internal phase emulsions (polyHIPEs) are demonstrated. By leveraging the unique properties of polyHIPEs, i.e., a three-dimensional (3D) interconnected network of macropores, and high-precision of the atomic-layer-deposition technique (ALD), we were able to homogeneously coat the entire surface of the pores in polyHIPE beads with TiO2-, ZnO-, and Al2O3-based nanocoatings. Parameters such as nanocoating thickness, growth per cycle (GPC), and metal oxide (MO) composition were systematically controlled by varying the number of deposition cycles and dosing time under specific process conditions. The combination of polyHIPE structure and ALD technique proved advantageous, as MO-nanocoatings with thicknesses between 11 ± 3 and 40 ± 9 nm for TiO2 or 31 ± 6 and 74 ± 28 nm for ZnO and Al2O3, respectively, were successfully fabricated. It has been shown that the number of ALD cycles affects both the thickness and crystallinity of the MO nanocoatings. Finally, the potential of ALD-derived TiO2-polyHIPE beads in photocatalytic oxidation of an aqueous bisphenol A (BPA) solution was demonstrated. The beads exhibited about five times higher activity than nanocomposite beads prepared by the conventional (Pickering) method. Such ALD-derived polyHIPE nanocomposites could find wide application in nanotechnology, sensor development, or catalysis.
Collapse
Affiliation(s)
- Gergő Ballai
- Interdisciplinary
Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
| | - Tomaž Kotnik
- Department
of Inorganic Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna
Pot 113, 1000 Ljubljana, Slovenia
| | - Matjaž Finšgar
- University
of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova 17, SI-2000 Maribor, Slovenia
| | - Albin Pintar
- Department
of Inorganic Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Zoltán Kónya
- Interdisciplinary
Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
- MTA-SZTE
Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1, H-6720 Szeged, Hungary
| | - András Sápi
- Interdisciplinary
Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
| | - Sebastijan Kovačič
- Department
of Inorganic Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
2
|
Hierarchical Macroporous PolyDCPD Composites from Surface-Modified Calcite-Stabilized High Internal Phase Emulsions. Polymers (Basel) 2023; 15:polym15010228. [PMID: 36616580 PMCID: PMC9824432 DOI: 10.3390/polym15010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 01/03/2023] Open
Abstract
High Internal Phase Emulsions (HIPEs) of dicyclopentadiene (DCPD) were prepared using mixtures of surface-modified calcite (mCalcite) and a non-ionic surfactant. Twelve different emulsion formulations were created using an experimental design methodology. Three distinctive levels of the internal phase ratio, the amount of mCalcite loading, and the surfactant were used to prepare the HIPEs. Accordingly, macroporous polyDCPD composites were synthesized by performing ring-opening metathesis polymerization (ROMP) on the HIPEs. The variations in the morphological and physical properties of the composites were investigated in terms of experimental parameters. In the end, five different model equations were derived with a confidence level of 95%. The main and binary interaction effects of the experimental parameters on the responses, such as the average cavity size, interconnecting pore size, specific surface area, foam density, and compression modulus, were demonstrated. The synergistic interaction between the amount of surfactant, the amount of mCalcite loading, and the internal phase ratio appeared to have a dominant role in the average cavity diameter. The solo effect of the internal phase ratio on the interconnecting pore size, foam density, and compression modulus was confirmed. In addition, it was demonstrated that the specific surface area of the composites was mainly changed depending on the amount of mCalcite loading.
Collapse
|
3
|
Emulsion-templated, hydrophilic-oleophobic aerogels with flexibility, stretchability and recyclability. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|