1
|
Gray NAG, Emslie DJH. Thorium(IV) and Uranium(IV) Thioether and Selenoether Complexes: Synthesis and An-ER 2 (E = S, Se) Bonding Comparison. Inorg Chem 2024; 63:18884-18891. [PMID: 39324595 DOI: 10.1021/acs.inorgchem.4c03074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Reactions of the rigid thioether- and selenoether-containing ligand salts [{Li(AE2Ph2)}2] (E = S or Se; AE2Ph2 = 4,5-bis(phenylchalcogenido)-2,7,9,9-tetramethylacridanide) with ThCl4(dme)2 or UCl4 (for E = Se) afforded the actinide chalcogenoether complexes [(AE2Ph2)2ThCl2] (E = S (1), Se (2)), and [(ASe2Ph2)2UCl2] (3). X-ray crystal structures of 1-3 revealed tetravalent actinide cations complexed to two κ3-coordinated AE2Ph2 ligands, with Th-ER2 and U-ER2 distances below the sum of the covalent radii. Complexes 1-3 provide extremely rare examples of thorium-thioether, thorium-selenoether, and uranium-selenoether bonds, and 1 and 2 contain the shortest known Th-SR2 and Th-SeR2 distances. DFT and QTAIM calculations confirm the presence of significant An(IV)-ER2 interactions in 1-3 and provide insight into the extent of covalency in the An-ER2 bonds.
Collapse
Affiliation(s)
- Novan A G Gray
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - David J H Emslie
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
2
|
Zhang X, Ye L, Chen W, Zhang X, Chen W, Chen M, Huang P. Theoretical Study of Am(III) and Eu(III) Separation by a Bipyridyl Phosphate Ligand. ACS OMEGA 2024; 9:12060-12068. [PMID: 38496969 PMCID: PMC10938453 DOI: 10.1021/acsomega.3c09940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Actinide An(III) and lanthanide Ln(III) are known to exhibit similar chemical properties; thus, it is difficult to distinguish them in the separation of highly radioactive waste liquids. One potential method to efficiently separate actinides and lanthanides involves the design and development of phosphorus-oxygen-bonded ligands with solvent extraction separation. Here, a bipyridine phosphate ligand with two isopropyl and phosphate groups is introduced to selectively extract actinides. The electronic structure, bonding properties, thermodynamic behavior, and quantum theory of atoms in molecules (QTAIM) of Am(III) and Eu(III) complexes with the bipyridine phosphate ligands were analyzed by using density functional theory (DFT) calculations. The analysis demonstrates that the Am-N bond exhibits stronger covalent characteristics than the Eu-N bond, indicating that the bipyridine phosphate ligand had better selectivity for Am(III) than for Eu(III) in terms of binding affinity. The thermodynamic analysis established the complex [ML(NO3)2(H2O)2]+ as the most stable species during the complexation process. The results indicate great potential for utilizing the bipyridine phosphate ligand for the effective separation of An(III)/Ln(III) in spent fuel reprocessing experiments.
Collapse
Affiliation(s)
- Xinyi Zhang
- Key
Laboratory of Intelligent Manufacturing Quality Big Data Tracing and
Analysis of Zhejiang Province, College of Science, China Jiliang University, Hangzhou 310018, China
| | - Lulu Ye
- Key
Laboratory of Intelligent Manufacturing Quality Big Data Tracing and
Analysis of Zhejiang Province, College of Science, China Jiliang University, Hangzhou 310018, China
| | - Weihao Chen
- Key
Laboratory of Intelligent Manufacturing Quality Big Data Tracing and
Analysis of Zhejiang Province, College of Science, China Jiliang University, Hangzhou 310018, China
| | - Xiaofei Zhang
- Key
Laboratory of Intelligent Manufacturing Quality Big Data Tracing and
Analysis of Zhejiang Province, College of Science, China Jiliang University, Hangzhou 310018, China
| | - Weiwei Chen
- Key
Laboratory of Intelligent Manufacturing Quality Big Data Tracing and
Analysis of Zhejiang Province, College of Science, China Jiliang University, Hangzhou 310018, China
| | - Miaogen Chen
- Key
Laboratory of Intelligent Manufacturing Quality Big Data Tracing and
Analysis of Zhejiang Province, College of Science, China Jiliang University, Hangzhou 310018, China
| | - Pinwen Huang
- Zhejiang
University of Water Resources and Electric Power, Hangzhou 310018, China
| |
Collapse
|
3
|
Wang Q, Liu Z, Song YF, Wang D. Recent Advances in the Study of Trivalent Lanthanides and Actinides by Phosphinic and Thiophosphinic Ligands in Condensed Phases. Molecules 2023; 28:6425. [PMID: 37687254 PMCID: PMC10489984 DOI: 10.3390/molecules28176425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
The separation of trivalent actinides and lanthanides is a key step in the sustainable development of nuclear energy, and it is currently mainly realized via liquid-liquid extraction techniques. The underlying mechanism is complicated and remains ambiguous, which hinders the further development of extraction. Herein, to better understand the mechanism of the extraction, the contributing factors for the extraction are discussed (specifically, the sulfur-donating ligand, Cyanex301) by combing molecular dynamics simulations and experiments. This work is expected to contribute to improve our systematic understanding on a molecular scale of the extraction of lanthanides and actinides, and to assist in the extensive studies on the design and optimization of novel ligands with improved performance.
Collapse
Affiliation(s)
- Qin Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China;
| | - Ziyi Liu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China;
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Dongqi Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China;
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Multidisciplinary Initiative Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Bishimbayeva GK, Gusarova NK, Nalibayeva AM, Verkhoturova SI, Bold A, Chernysheva NA, Zhangabayeva AK, Arbuzova SN, Abdikalykov YN, Zhumabayeva DS. Synthesis and Properties of Sulfur-Containing Organophosphorus Extractants Based on Red Phosphorus, Alkyl Bromides, and Elemental Sulfur. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093394. [PMID: 37176286 PMCID: PMC10180263 DOI: 10.3390/ma16093394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
In order to obtain sulfur-containing organophosphorus compounds that are promising as extractants of heavy metals, the interaction of elemental phosphorus and sulfur with alkyl bromides catalyzed using strong bases was studied. According to the task, the reaction of non-toxic and non-flammable red phosphorus with alkyl bromides under conditions of phase transfer catalysts (PTC), followed by the introduction of elemental sulfur into the reaction medium, were studied. It is shown that alkyl bromides interact with red phosphorus when heated (95-105 °C, 5-8 h) under conditions of phase transfer catalysts (PTC) in a two-phase system: a 60% aqueous solution of KOH-toluene-benzyltriethylammonium chloride (BTEAC) forming a mixture of organophosphorus compounds along with alkylphosphines (57-60%), are the main reaction products; alkylphosphine oxides are also formed (40-43%). The introduction of elemental sulfur (solution in toluene) at the final stage of the process into the reaction mass cooled to 40-60 °C leads to the expected alkylphosphine sulfides, which are the result of the interaction of alkylphosphines with sulfur. The formation of complex mixtures of products prevents the release of target alkylphosphine sulfides in individual form. However, the synthesized mixture of alkylphosphine sulfides and alkylphosphine oxides without separation into individual components is promising for studying its extraction properties in relation to heavy metals. Testing of the extraction properties of synthesized mixtures of alkylphosphine sulfides and alkylphosphine oxides in relation to heavy metals (Ni, Co, Zn, Pb) and noble metals (Ag) showed that the resulting mixtures of tertiary phosphine oxides and phosphine sulfides are highly effective extractants. The degree of extraction in relation to Ni, Co, Zn, and Pb varies from 99.90 to 99.99%, and for Ag from 99.56 to 99.59%.
Collapse
Affiliation(s)
- Gaukhar K Bishimbayeva
- D.V. Sokolsky Institute of Fuel, Catalysis and Electrochemistry, Kunayev, 142, Almaty 050010, Kazakhstan
| | - Nina K Gusarova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch Russian Academy of Sciences, St. Favorskogo, 1, 664033 Irkutsk, Russia
| | - Arailym M Nalibayeva
- D.V. Sokolsky Institute of Fuel, Catalysis and Electrochemistry, Kunayev, 142, Almaty 050010, Kazakhstan
| | - Svetlana I Verkhoturova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch Russian Academy of Sciences, St. Favorskogo, 1, 664033 Irkutsk, Russia
| | - Amangul Bold
- D.V. Sokolsky Institute of Fuel, Catalysis and Electrochemistry, Kunayev, 142, Almaty 050010, Kazakhstan
| | - Natalya A Chernysheva
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch Russian Academy of Sciences, St. Favorskogo, 1, 664033 Irkutsk, Russia
| | - Assem K Zhangabayeva
- D.V. Sokolsky Institute of Fuel, Catalysis and Electrochemistry, Kunayev, 142, Almaty 050010, Kazakhstan
| | - Svetlana N Arbuzova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch Russian Academy of Sciences, St. Favorskogo, 1, 664033 Irkutsk, Russia
| | - Yerlan N Abdikalykov
- D.V. Sokolsky Institute of Fuel, Catalysis and Electrochemistry, Kunayev, 142, Almaty 050010, Kazakhstan
| | - Dinara S Zhumabayeva
- D.V. Sokolsky Institute of Fuel, Catalysis and Electrochemistry, Kunayev, 142, Almaty 050010, Kazakhstan
| |
Collapse
|
5
|
Peroutka AA, Galley SS, Shafer JC. A multi-faceted approach to probe organic phase composition in TODGA systems with 1-alcohol phase modifiers. RSC Adv 2023; 13:6017-6026. [PMID: 36814872 PMCID: PMC9939940 DOI: 10.1039/d2ra07786h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
The effect of varying 1-alcohol alkyl chain length on extraction of lanthanides (Lns), H2O, and H+ was studied with tetraoctyl diglycolamide (TODGA) via solvent extraction coupled with FT-IR investigations. This multi-faceted approach provided understanding regarding the relationship between extracted Lns, H2O and H+, 1-alcohol volume fraction, and 1-alcohol alkyl chain length. Under acidic conditions there is competition with 1-alcohols and their ability to solubilize aggregates and incidentally induce third phase formation by increasing the extraction of H2O. At low 1-alcohol concentrations (5 vol%), the trend for 1-alcohol alkyl lengths in solubilizing the aggregates is 1-hexanol > 1-octanol > 1-decanol. Shorter alkyl chains suppress aggregation, ultimately resulting in lower H2O concentrations and less available TODGA to hydrogen bond with H+. Increasing the 1-alcohol concentration to 30 vol% results in the opposite trend, with longer alkyl chains suppressing aggregation. These results suggest this approach is effective at probing trends in the organic phase micro-structure, and indicates trends across the Ln period with various 1-alcohol alkyl chain lengths are a function of outer-sphere coordination.
Collapse
Affiliation(s)
| | - Shane S. Galley
- Department of Chemistry, Colorado School of MinesGoldenCOUSA
| | | |
Collapse
|
6
|
Wu S, Zhang Y, Li AY. Effects of Electron‐Withdrawing and ‐Donating Substituents in N‐Donor Scorpionate Ligands and the Metal 5
f
/4
f
Orbitals on Am(III)/Eu(III) Complexation and Separation. ChemistrySelect 2022. [DOI: 10.1002/slct.202203622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shouqiang Wu
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P.R.China
| | - Yiying Zhang
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P.R.China
| | - An Yong Li
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P.R.China
| |
Collapse
|
7
|
Zhang SM, Wu QY, Yuan LY, Wang CZ, Lan JH, Chai ZF, Liu ZR, Shi WQ. Theoretical study on the extraction behaviors of MoO22+ with organophosphorous extractants. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Wang Z, Lu JB, Dong X, Yan Q, Feng X, Hu HS, Wang S, Chen J, Li J, Xu C. Ultra-Efficient Americium/Lanthanide Separation through Oxidation State Control. J Am Chem Soc 2022; 144:6383-6389. [PMID: 35353513 DOI: 10.1021/jacs.2c00594] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lanthanide/actinide separation is a worldwide challenge for atomic energy and nuclear waste treatment. Separation of americium (Am), a critical actinide element in the nuclear fuel cycle, from lanthanides (Ln) is highly desirable for minimizing the long-term radiotoxicity of nuclear waste, yet it is extremely challenging given the chemical similarity between trivalent Am(III) and Ln(III). Selective oxidation of Am(III) to a higher oxidation state (OS) could facilitate this separation, but so far, it is far from satisfactory for practical application as a result of the unstable nature of Am in a high OS. Herein, we find a novel strategy to generate stable pentavalent Am (Am(V)) through coordination of Am(III) with a diglycolamide ligand and oxidation with Bi(V) species in the presence of an organic solvent. This strategy leads to efficient stabilization of Am(V) and an extraordinarily high separation factor (>104) of Am from Ln through one single contact in solvent extraction, thereby opening a new avenue to study the high-OS chemistry of Am and fulfill the crucial task of Ln/Am separation in the nuclear fuel cycle. The synergistic coordination and oxidation process is found to occur in the organic solvent, and the mechanism has been well elucidated by quantum-theoretical modeling.
Collapse
Affiliation(s)
- Zhipeng Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Jun-Bo Lu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xue Dong
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Qiang Yan
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Xiaogui Feng
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Han-Shi Hu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences, Soochow University, Suzhou 215123, China
| | - Jing Chen
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Mahmoudiani F, Alamdar Milani S, Hormozi F, Yadollahi A. Application of response surface methodology for modeling and optimization of the extraction and separation of Se(IV) and Te(IV) from nitric acid solution by Cyanex 301 extractant. PROGRESS IN NUCLEAR ENERGY 2022. [DOI: 10.1016/j.pnucene.2021.104052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Gray NAG, Price JS, Emslie DJH. Uranium(IV) Thio- and Selenoether Complexes: Syntheses, Structures, and Computational Investigation of U-ER 2 Interactions. Chemistry 2021; 28:e202103580. [PMID: 34875126 DOI: 10.1002/chem.202103580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Indexed: 11/07/2022]
Abstract
Rigid thioether- and selenoether-containing pincer proligands H[AS2 Ph 2 ] (1) and H[ASe2 Ph 2 ] (2) were synthesized, and deprotonation provided the potassium salts [K(AS2 Ph 2 )(dme)] (3) and [K(ASe2 Ph 2 )(dme)2 ] (4). Reaction of two equivalents of 3 or 4 with [UI4 (dioxane)2 ] afforded the uranium thioether complex [(AS2 Ph 2 )2 UI2 ] (5) and the first example of a uranium-selenoether complex, [(ASe2 Ph 2 )2 UI2 ] (6). X-ray structures revealed distorted square antiprismatic geometries in which the AE2 Ph 2 ligands are κ3 -coordinated. The nature of the U-ER2 bonding in 5 and 6, as well as methyl-free analogues of 5 and 6 and a hypothetical ether analogue, was investigated computationally (including NBO, AIM, and ELF calculations) illustrating increasing covalency from O to S to Se.
Collapse
Affiliation(s)
- Novan A G Gray
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - Jeffrey S Price
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - David J H Emslie
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| |
Collapse
|