1
|
Wu H, Li J, Ji Q, Ariga K. Nanoarchitectonics for structural tailoring of yolk-shell architectures for electrochemical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2420664. [PMID: 39539602 PMCID: PMC11559037 DOI: 10.1080/14686996.2024.2420664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Developing electrochemical energy storage and conversion systems, such as capacitors, batteries, and fuel cells is crucial to address rapidly growing global energy demands and environmental concerns for a sustainable society. Significant efforts have been devoted to the structural design and engineering of various electrode materials to improve economic applicability and electrochemical performance. The yolk-shell structures represent a special kind of core-shell morphologies, which show great application potential in energy storage, controlled delivery, adsorption, nanoreactors, sensing, and catalysis. Their controllable void spaces may facilitate the exposure of more active sites for redox reactions and enhance selective adsorption. Based on different nanoarchitectonic designs and fabrication techniques, the yolk-shell structures with controllable structural nanofeatures and the homo- or hetero-compositions provide multiple synergistic effects to promote reactions on the electrode/electrolyte interfaces. This review is focused on the key structural features of yolk-shell architectures, highlighting the recent advancements in their fabrication with adjustable space and mono- or multi-metallic composites. The effects of tailorable structure and functionality of yolk-shell nanostructures on various electrochemical processes are also summarized.
Collapse
Affiliation(s)
- Huan Wu
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering Nanjing University of Science and Technology, Nanjing, China
| | - Jiahao Li
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering Nanjing University of Science and Technology, Nanjing, China
| | - Qingmin Ji
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering Nanjing University of Science and Technology, Nanjing, China
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
2
|
Wu C, Zhang Y, Yang HY. Rational Design and Facile Preparation of Palladium-Based Electrocatalysts for Small Molecules Oxidation. CHEMSUSCHEM 2024:e202401127. [PMID: 39211939 DOI: 10.1002/cssc.202401127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Direct liquid fuel cells (DLFCs) can convert the chemical energy of small organic molecules directly into electrical energy, which is a promising technique and always calls for electrocatalysts with high activity, stability and selectivity. Palladium (Pd)-based catalysts for DLFCs have been widely studied with the pursuit of ultra-high performance, however, most of the preparation routes require complex agents, multi-operation steps, even extreme experimental conditions, which are high-cost, energy-consuming, and not conducive to the scalable and sustainable production of catalysts. In this review, the recent progresses on not only the rational design strategies, but also the facile preparation methods of Pd-based electrocatalysts for small molecules oxidation reaction (SMOR) are comprehensively summarized. Based on the principles of green chemistry in material synthesis, the basic rules of "facile method" have been restricted, and the fabrication processes, perks and drawbacks, as well as practical applications of the "real" facile methods have been highlighted. The landscape of this review is to facilitate the mild preparation of efficient Pd-based electrocatalysts for SMOR, that is, to achieve a balance between "facile preparation" and "outstanding performance", thereby to stimulate the huge potential of sustainable nano-electrocatalysts in various research and industrial fields.
Collapse
Affiliation(s)
- Chenshuo Wu
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 819 Xisaishan Road, Huzhou, 313001, China
| | - Yingmeng Zhang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 819 Xisaishan Road, Huzhou, 313001, China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| |
Collapse
|
3
|
Li Y, Zhang M, Wang Y, Guan L, Zhao D, Hao X, Guo Y. A Zn(II) Coordination Polymer for Fluorescent Turn-Off Selective Sensing of Heavy Metal Cation and Toxic Inorganic Anions. Molecules 2024; 29:2943. [PMID: 38931007 PMCID: PMC11206703 DOI: 10.3390/molecules29122943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
A novel coordination polymer [Zn(atyha)2]n (1) (Hatyha = 2-(2-aminothiazole-4-yl)-2- hydroxyiminoacetic acid) was constructed by hydrothermal reaction of Zn2+ with Hatyha ligand. CP 1 exhibits a 2D (4,4)-connected topological framework with Schläfli symbol of {44·62}, where atyha- anions serve as tridentate ligands, bridging with Zn2+ through carboxylate, thiazole and oxime groups. CP 1 displays a strong ligand-based photoluminescence at 390 nm in the solid state, and remains significantly structurally stable in water. Interestingly, it can be utilized as a fluorescent probe for selective and sensitive sensing of Fe3+, Cr2O72- and MnO4- through the fluorescent turn-off effect with limit of detection (LOD) of 3.66 × 10-6, 2.38 × 10-5 and 2.94 × 10-6 M, respectively. Moreover, the efficient recyclability for detection of Fe3+ and Cr2O72- is better than that for MnO4-. The mechanisms of fluorescent quenching involve reversible overlap of UV-Vis absorption bands of the analytes (Fe3+, Cr2O72- and MnO4-) with fluorescence excitation and emission bands for CP 1, respectively.
Collapse
Affiliation(s)
| | | | | | - Lei Guan
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | | | | | | |
Collapse
|
4
|
Li J, Mao A, Hu X, Wang L, Wang D, Duan ZC. Preparation of a novel cadmium-containing coordination polymer and catalytic application in the synthesis of N-alkylated aminoquinoline derivatives via the borrowing hydrogen approach. Dalton Trans 2024; 53:5064-5072. [PMID: 38375833 DOI: 10.1039/d3dt04221a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Herein, we report an efficient and straightforward approach for the synthesis of N-alkylated aminoquinoline derivatives by recyclable Cd-containing coordination polymer-catalyzed reactions of aminoquinolines with primary alcohols via the borrowing hydrogen strategy. In this work, a new type of coordination polymer [Cd(CIA)(phen)2(H2O)]n was successfully designed and fabricated. The molecular structure was corroborated by single-crystal X-ray diffraction and fully characterized by PXRD, FT-IR, TGA, and XPS. Importantly, this polymer revealed high catalytic activity for the N-alkylation reaction of 2-aminoquinoline and 8-aminoquinoline with inexpensive and low-toxicity alcohols as alkylating agents in excellent yields up to 95%. Interestingly, the present synthetic protocol was successfully applied for the gram-level synthesis of several biologically active compounds. In addition, several control reactions were carried out to investigate the possible mechanisms of this transformation. Finally, recycling experiments indicated that the cadmium coordination polymer showed good recovery performance for borrowing hydrogen reactions.
Collapse
Affiliation(s)
- Jiahao Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Anruo Mao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Xinyu Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Likui Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Zheng-Chao Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, PR China
| |
Collapse
|
5
|
Sikma RE, Butler KS, Vogel DJ, Harvey JA, Sava Gallis DF. Quest for Multifunctionality: Current Progress in the Characterization of Heterometallic Metal-Organic Frameworks. J Am Chem Soc 2024; 146:5715-5734. [PMID: 38364319 DOI: 10.1021/jacs.3c05425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Metal-organic frameworks (MOFs) are a class of porous, crystalline materials that have been systematically developed for a broad range of applications. Incorporation of two or more metals into a single crystalline phase to generate heterometallic MOFs has been shown to lead to synergistic effects, in which the whole is oftentimes greater than the sum of its parts. Because geometric proximity is typically required for metals to function cooperatively, deciphering and controlling metal distributions in heterometallic MOFs is crucial to establish structure-function relationships. However, determination of short- and long-range metal distributions is nontrivial and requires the use of specialized characterization techniques. Advancements in the characterization of metal distributions and interactions at these length scales is key to rapid advancement and rational design of functional heterometallic MOFs. This perspective summarizes the state-of-the-art in the characterization of heterometallic MOFs, with a focus on techniques that allow metal distributions to be better understood. Using complementary analyses, in conjunction with computational methods, is critical as this field moves toward increasingly complex, multifunctional systems.
Collapse
Affiliation(s)
- R Eric Sikma
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Kimberly S Butler
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Dayton J Vogel
- Computational Materials & Data Science Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Jacob A Harvey
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Dorina F Sava Gallis
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
6
|
Sun Y, Ma J, Ahmad F, Xiao Y, Guan J, Shu T, Zhang X. Bimetallic Coordination Polymers: Synthesis and Applications in Biosensing and Biomedicine. BIOSENSORS 2024; 14:117. [PMID: 38534224 DOI: 10.3390/bios14030117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 03/28/2024]
Abstract
Bimetallic coordination polymers (CPs) have two different metal ions as connecting nodes in their polymer structure. The synthesis methods of bimetallic CPs are mainly categorized into the one-pot method and post-synthesis modifications according to various needs. Compared with monometallic CPs, bimetallic CPs have synergistic effects and excellent properties, such as higher gas adsorption rate, more efficient catalytic properties, stronger luminescent properties, and more stable loading platforms, which have been widely applied in the fields of gas adsorption, catalysis, energy storage as well as conversion, and biosensing. In recent years, the study of bimetallic CPs synergized with cancer drugs and functional nanomaterials for the therapy of cancer has increasingly attracted the attention of scientists. This review presents the research progress of bimetallic CPs in biosensing and biomedicine in the last five years and provides a perspective for their future development.
Collapse
Affiliation(s)
- Yanping Sun
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Jianxin Ma
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Faisal Ahmad
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yelan Xiao
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Jingyang Guan
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Tong Shu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xueji Zhang
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
7
|
Liu S, Liu W, Chen C, Sun Y, Bai S, Liu W. Construction of Highly Luminescent Lanthanide Coordination Polymers and Their Visualization for Luminescence Sensing. Inorg Chem 2024; 63:1725-1735. [PMID: 38225216 DOI: 10.1021/acs.inorgchem.3c02328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
NaH2SIP was selected as an organic ligand (NaH2SIP = 5-sulfoisophthalic acid monosodium salt). We successfully constructed a new class of lanthanide coordination polymers Ln-HS ([Ln(SIP)(DMF)(H2O)4]DMF·H2O; Ln = Eu, Tb, Sm, and Dy) by a simple solvothermal synthesis method. They exhibited excellent photoluminescence properties for Ln3+ ions, where Eu-HS and Tb-HS exhibited high quantum yields of 13.70 and 42.38%, respectively. The codoped lanthanide coordination polymers obtained by doping with different ratios of Eu3+/Tb3+ serve as excellent ratiometric thermometers with high sensitivities in the physiological temperature range, with values of 16.8, 7.0, and 14.5%·K-1, respectively. The luminescent colors of Tb0.95Eu0.05-HS and Tb0.94Eu0.06-HS exhibit variations from green to yellow to orange, achieving visualized luminescence in a narrow temperature range. The composite film material Tb0.94Eu0.06-HS@PMMA demonstrates this color variation. Next, Tb0.5Sm0.5-HS obtained by Tb3+/Sm3+ codoping was investigated. The difference in the luminescence colors visible to the naked eye at different excitation wavelengths and the change in luminescence colors occur in a very narrow temperature range. All of them show the great value of the visualized luminescence in practical anticounterfeiting, with double anticounterfeiting function and high security.
Collapse
Affiliation(s)
- Shiying Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wei Liu
- Frontiers Science Center for Rare Isotope, School of Nuclear Science and Technology, Institute of National Nuclear Industry, Lanzhou University, Lanzhou 730000, China
| | - Chunyang Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yiliang Sun
- Frontiers Science Center for Rare Isotope, School of Nuclear Science and Technology, Institute of National Nuclear Industry, Lanzhou University, Lanzhou 730000, China
| | - Shiqiang Bai
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Kodrin I, Rodríguez M, Politeo N, Soldin Ž, Kerš I, Rončević T, Čikeš Čulić V, Sokol V, Doctorovich F, Kukovec BM. From Simple Palladium(II) Monomers to 2D Heterometallic Sodium-Palladium(II) Coordination Networks with 2-Halonicotinates. ACS OMEGA 2024; 9:4111-4122. [PMID: 38284025 PMCID: PMC10809674 DOI: 10.1021/acsomega.3c09497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/30/2024]
Abstract
The 2D heterometallic sodium-palladium(II) coordination polymers with 2-halonicotinates [2-chloropyridine-3-carboxylate (2-chloronicotinate), 2-Clnic- and 2-bromopyridine-3-carboxylate (2-bromonicotinate), 2-Brnic-], {[Na2(H2O)2(μ-H2O)4PdCl2(μ-2-Clnic-N:O')2]}n (1), and {[Na2(H2O)2(μ-H2O)4PdBr2(μ-2-Brnic-N:O')2]·2H2O}n (2) were prepared in aqueous solutions under the presence of NaHCO3, while palladium(II) monomers with the neutral 2-chloronicotinic and 2-bromonicotinic acid ligands, [PdCl2(2-ClnicH-N)2]·2DMF (3) and [PdCl2(2-BrnicH-N)2]·2DMF (4), were prepared in DMF/water mixtures (DMF = N,N'-dimethylformamide). The zigzag chains of water-bridged sodium ions are in turn bridged by [PdCl2(2-Clnic)2]2- moieties in 1 or by [PdBr2(2-Brnic)2]2- moieties in 2, leading to the formation of the infinite 2D coordination networks of 1 or 2. The DFT calculations showed the halosubstituents type (Cl vs Br) does not have an influence on the formation of either trans or cis isomers. The trans isomers were found in all reported compounds; being more stable for about 10 to 15 kJ mol-1. The 2D coordination networks 1 and 2 are more stabilized by the formation of Na-Ocarboxylate bonds, comparing to the stabilization of palladium(II) monomers 3 and 4 by hydrogen-bonding with DMF molecules. The difference in DFT calculated energy stabilization for 1 and 2 is ascribed to the type of halosubstituents and to the presence/absence of lattice water molecules in 1 and 2. The compounds show no antibacterial activity toward reference strains of Escherichia coli and Staphylococcus aureus bacteria and no antiproliferative activity toward bladder (T24) and lung (A549) cancer cell lines.
Collapse
Affiliation(s)
- Ivan Kodrin
- Department
of Chemistry, Faculty of Science, University
of Zagreb, Horvatovac
102a, HR-10000 Zagreb, Croatia
| | - Maricel Rodríguez
- INQUIMAE-CONICET;
DQIAQF-FCEyN, Universidad de Buenos Aires, Intendente Güiraldes 2160,
Pabellón 2, Piso 3, C1428EGA Buenos Aires, Argentina
| | - Nives Politeo
- Department
of Physical Chemistry, Faculty of Chemistry and Technology, University of Split, Rud̵era Boškovića 35, HR-21000 Split, Croatia
| | - Željka Soldin
- Department
of Chemistry, Faculty of Science, University
of Zagreb, Horvatovac
102a, HR-10000 Zagreb, Croatia
| | - Igor Kerš
- Department
of Chemistry, Faculty of Science, University
of Zagreb, Horvatovac
102a, HR-10000 Zagreb, Croatia
| | - Tomislav Rončević
- Department
of Biology, Faculty of Science, University
of Split, Rud̵era
Boškovića 33, HR-21000 Split, Croatia
| | - Vedrana Čikeš Čulić
- School
of Medicine, University of Split, Šoltanska 2, HR-21000 Split, Croatia
| | - Vesna Sokol
- Department
of Physical Chemistry, Faculty of Chemistry and Technology, University of Split, Rud̵era Boškovića 35, HR-21000 Split, Croatia
| | - Fabio Doctorovich
- INQUIMAE-CONICET;
DQIAQF-FCEyN, Universidad de Buenos Aires, Intendente Güiraldes 2160,
Pabellón 2, Piso 3, C1428EGA Buenos Aires, Argentina
| | - Boris-Marko Kukovec
- Department
of Physical Chemistry, Faculty of Chemistry and Technology, University of Split, Rud̵era Boškovića 35, HR-21000 Split, Croatia
| |
Collapse
|
9
|
Zhang Q, Wang Y, Ge Y, Liu Q, Lang JP. Regulation of Crystal Structures and Solid-State Photoreactivity of Diolefin Coordination Polymers by Carboxylate Ligands. Inorg Chem 2023; 62:19080-19086. [PMID: 37938998 DOI: 10.1021/acs.inorgchem.3c03148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Olefinic coordination polymers (CPs) have recently drawn more attention, owing to the many possibilities in conformational conversions and photochemical reactivity that olefin molecules offer. In the presence of different carboxylic acids, we utilize one diolefin ligand 4,4'-((1E,1'E)-(2,5-dimethoxyl-1,4-phenylene)bis(ethene-2,1-diyl))dipyridine (OCH3-bpeb) and Cd(II) to assemble six different crystalline CPs (1-6). By fine-tuning the substituent size, carboxyl group number, and geometrical configuration of carboxylate ligands, these diolefin CPs show quite different crystal architecture models, from one-dimensional intersecting stacking to one-dimensional parallel stacking to three-dimensional interpenetrated structure. Of these, four kinds of CPs (1, 2, 5, and 6) are demonstrated to be photoreactive for [2 + 2] cycloaddition reactions, as confirmed by proton nuclear magnetic resonance and single-crystal X-ray diffraction. Both 2 and 5 can be dimerized into different cyclobutane products in a single-crystal-to-single-crystal manner under visible light, and remarkably, the photocycloaddition reaction of 5 involves a rare phase transition with structural symmetry enhancement from P1̅ to P2/n. This work demonstrates the power of carboxylate ligands in tuning single crystal structures and photocycloaddition reactions of CPs, which provides important references for the further exploration of other physicochemical properties of functionalized olefin-containing complexes.
Collapse
Affiliation(s)
- Qiaoqiao Zhang
- College of Chemistry, Chemical Engineering and Materials, Soochow University, Suzhou 215123, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Yong Wang
- College of Chemistry, Chemical Engineering and Materials, Soochow University, Suzhou 215123, P. R. China
| | - Yu Ge
- College of Chemistry, Chemical Engineering and Materials, Soochow University, Suzhou 215123, P. R. China
| | - Qi Liu
- College of Chemistry, Chemical Engineering and Materials, Soochow University, Suzhou 215123, P. R. China
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials, Soochow University, Suzhou 215123, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
10
|
Fan X, Wang H, Gu J, Lv D, Zhang B, Xue J, Kirillova MV, Kirillov AM. Coordination Polymers from an Amino-Functionalized Terphenyl-Tetracarboxylate Linker: Structural Multiplicity and Catalytic Properties. Inorg Chem 2023; 62:17612-17624. [PMID: 37847556 DOI: 10.1021/acs.inorgchem.3c01905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
An amino-functionalized terphenyl-tetracarboxylic acid, 2'-amino-[1,1':4',1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid (H4tpta), was used as an adaptable linker to synthesize, under hydrothermal conditions, eight coordination polymers (CPs). The obtained products were formulated as [Co(μ6-H2tpta)]n (1), [Co(μ3-H2tpta)(2,2'-bipy)]n (2), [M3(μ6-Htpta)2(2,2'-bipy)2]n (M = Mn (3), Cd (4)), [Ni2(μ4-tpta)(phen)2(H2O)4]n (5), [Zn2(μ6-tpta)(phen)2]n (6), {[Zn2(μ6-tpta)(μ-4,4'-bipy)]·H2O}n (7), and [Zn2(μ6-tpta)(μ-H2biim)(H2O)2]n (8), wherein 2,2'-bipyridine (2,2'-bipy), 4,4'-bipyridine (4,4'-bipy), 1,10-phenanthroline (phen), or 2,2'-biimidazole (H2biim) are present as additional stabilizing ligands. The structural types of 1-8 vary from one-dimensional (1D) (2, 5) and two-dimensional (2D) (3, 4, 6) CPs to three-dimensional (3D) metal-organic frameworks (MOFs) (1, 7, and 8) with a diversity of topologies. The products 1-8 were investigated as catalysts in the Knoevenagel condensation involving aldehydes and active methylene derivatives (malononitrile, ethyl cyanoacetate, or tert-butyl cyanoacetate), leading to high condensation product yields (up to 99%) under optimized conditions. Various reaction conditions, substrate scope, and catalyst recycling were investigated. This work broadens the application of H4tpta as a versatile tetracarboxylate linker for the generation of diverse CPs/MOFs.
Collapse
Affiliation(s)
- Xiaoxiang Fan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hongyu Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jinzhong Gu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Dongyu Lv
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Bo Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jijun Xue
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Marina V Kirillova
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Alexander M Kirillov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
11
|
Wang C, Ren G, Tan Q, Che G, Luo J, Li M, Zhou Q, Guo DY, Pan Q. Detection of organic arsenic based on acid-base stable coordination polymer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122812. [PMID: 37167746 DOI: 10.1016/j.saa.2023.122812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/27/2023] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
Organic arsenic, usually found in animal feed and livestock farm wastewater, is a carcinogenic and life-threatening substance. Hence, for the rapid and sensitive detection of organic arsenic, the development of new fluorescent sensors is quite essential. Here, an acid-base stable coordination polymer (HNU-62) was constructed by the introduction of hydrophobic fluorescence ligand, which can be used as a highly selective sensor for the detection of roxarsone (ROX) in water. The limit of detection (LOD) of HNU-62 for ROX was 4.5 × 10-6 M. Furthermore, HNU-62 also exhibits good anti-interference and recyclability, which can be used in detecting ROX in real samples of pig feed. This work provides an alternative approach for the construction of water-stable coordination polymer-based fluorescence sensors.
Collapse
Affiliation(s)
- Cong Wang
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China
| | - Guojian Ren
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China.
| | - Qinyue Tan
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China
| | - Guang Che
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China
| | - Jian Luo
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China
| | - Meiling Li
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China
| | - Qi Zhou
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd, Xiamen, China.
| | - Qinhe Pan
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
12
|
Gildenast H, Gruszien L, Englert U. The heterometallic one-dimensional solvated coordination polymer [NiPt 2Cl 6(TRIP-Py) 4] n. Acta Crystallogr C Struct Chem 2023; 79:118-124. [PMID: 36892836 PMCID: PMC10074039 DOI: 10.1107/s2053229623001845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
The ditopic ligand 10-[4-(pyridin-4-yl)phenyl]-9-phospha-10-silatriptycene (TRIP-Py, C29H20NPSi) binds as a pyridine donor to NiII and as a phosphatriptycene donor towards PtII. The selectivity relies entirely on the Pearson character of the donor sites and the matching hardness of the respective metal cations. The product is the one-dimensional coordination polymer catena-poly[[[dichloridonickel(II)]-bis{μ-10-[4-(pyridin-4-yl)phenyl]-9-phospha-10-silatriptycene}-bis[dichloridoplatinum(II)]-bis{μ-10-[4-(pyridin-4-yl)phenyl]-9-phospha-10-silatriptycene}] dichloromethane pentasolvate ethanol icosasolvate], {[NiPt2Cl6(TRIP-Py)4]·5CH2Cl2·20EtOH}n (1), which retains large pores due to the inherent rigidity of the ligand. This is enabled by the caged triptycene scaffold which fixes the direction of the phosphorus donor with respect to the remaining molecule and especially the pyridyl moiety. In its crystal structure, which was determined from synchrotron data, the pores of the polymer are filled with dichloromethane and ethanol molecules. Finding a suitable model for the pore content is complicated as it is too disordered to give a reasonable atomic model but too ordered to be described by an electron gas solvent mask. This article presents an in-depth description of this polymer, as well as a discussion on the use of the bypass algorithm for solvent masks.
Collapse
Affiliation(s)
- Hans Gildenast
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Lukas Gruszien
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Ulli Englert
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
13
|
Li ZY, Chang H, Zhao JJ, Zhang C, Wu DQ, Zhai B. Tunable structures and magnetic / optical properties of six Cd(II)-based coordination polymers by introducing different para- or dia-magnetic metal ions. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
14
|
Gildenast H, Hempelmann G, Gruszien L, Englert U. A Rigid Linker for Site-Selective Coordination of Transition Metal Cations: Combining an Acetylacetone with a Caged Phosphine. Inorg Chem 2023; 62:3178-3185. [PMID: 36757816 DOI: 10.1021/acs.inorgchem.2c04101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The combination of a soft phosphorus and a hard oxygen donor in the new ligand HacacTRIP leads to excellent site selectivity for the coordination of two different metal cations of matching Pearson character. The deprotonation step required for coordinating the acetylacetone oxygen donor further increases the selectivity. In contrast to most phosphines, the use of the caged phosphatriptycene motif enables a rigid and directional orientation of the phosphorus binding site which is required to form stable coordination network structures. In addition to the synthesis of HacacTRIP, we present its selective coordination. The deprotonated acetylacetone was selectively bound to CuII and FeIII. The solid state structure of the former displays a rare axial coordination of chloroform molecules. The phosphorus donor was selectively coordinated to the monovalent coinage metal cations CuI, AgI, and AuI. The CuI and AgI complexes represent the first examples in which a phosphatriptycene is bound to these metal cations. Heterometallic coordination compounds were characterized with combinations of these two groups. They comprise an oligonuclear CuI/CuII mixed-valence compound in which iodide binds to both CuI and CuII cations and a complex in which acacTRIP- bridges CuII and AuI. In addition to these discrete aggregates, the ligand has been used to link FeIII and AgI into a 2D coordination polymer with unprecedented trigonal planar coordination of three bulky phosphatriptycenes to a cation and resulting honeycomb topology. Its almost regular hexagons underline the desired rigidity of the ditopic acacTRIP- ligand.
Collapse
Affiliation(s)
- Hans Gildenast
- RWTH Aachen University, Institute of Inorganic Chemistry, Aachen, North Rhine-Westphalia 52074, Germany
| | - Greta Hempelmann
- RWTH Aachen University, Institute of Inorganic Chemistry, Aachen, North Rhine-Westphalia 52074, Germany
| | - Lukas Gruszien
- RWTH Aachen University, Institute of Inorganic Chemistry, Aachen, North Rhine-Westphalia 52074, Germany
| | - Ulli Englert
- RWTH Aachen University, Institute of Inorganic Chemistry, Aachen, North Rhine-Westphalia 52074, Germany.,Shanxi University, Key Laboratory of Materials for Energy Conversion and Storage, Institute of Molecular Science, Taiyuan, Shanxi 030006, China
| |
Collapse
|
15
|
Li ZY, Shao EH, Shi YL, Zhang XF, Zhai B. Structure and magnetic properties of one carboxylate-bridged one-dimensional polymer with linear trinuclear [Co3] cluster unit. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2022.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Structure, Optical and Magnetic Properties of Two Isomeric 2-Bromomethylpyridine Cu(II) Complexes [Cu(C 6H 9NBr) 2(NO 3) 2] with Very Different Binding Motives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020731. [PMID: 36677789 PMCID: PMC9866386 DOI: 10.3390/molecules28020731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
Two isomeric 2-bromomethylpyridine Cu(II) complexes [Cu(C6H9NBr)2(NO3)2] with 2-bromo-5-methylpyridine (L1) and 2-bromo-4-methylpyridine (L2) were synthesized as air-stable blue materials in good yields. The crystal structures were different with [Cu(L1)2(NO3)2] (CuL1) crystallizing in the monoclinic space group P21/c, while the 4-methyl derivative CuL2 was solved and refined in triclinic P1¯. The orientation of the Br substituents in the molecular structure (anti (CuL1) vs. syn (CuL2) conformations) and the geometry around Cu(II) in an overall 4 + 2 distorted coordination was very different with two secondary (axially elongated) Cu-O bonds on each side of the CuN2O2 basal plane in CuL1 or both on one side in CuL2. The two Br substituents in CuL2 come quite close to the Cu(II) centers and to each other (Br⋯Br ~3.7 Å). Regardless of these differences, the thermal behavior (TG/DTA) of both materials is very similar with decomposition starting at around 160 °C and CuO as the final product. In contrast to this, FT-IR and Raman frequencies are markedly different for the two isomers and the UV-vis absorption spectra in solution show marked differences in the π-π* absorptions at 263 (CuL2) or 270 (CuL1) nm and in the ligand-to-metal charge transfer bands at around 320 nm which are pronounced for CuL1 with the higher symmetry at the Cu(II) center, but very weak for CuL2. The T-dependent susceptibility measurements also show very similar results (µeff = 1.98 µB for CuL1 and 2.00 µB for CuL2 and very small Curie-Weiss constants of about -1. The EPR spectra of both complexes show axial symmetry, very similar averaged g values of 2.123 and 2.125, respectively, and no hyper-fine splitting.
Collapse
|
17
|
Yoshinari N, Kuwamura N, Kojima T, Konno T. Development of coordination chemistry with thiol-containing amino acids. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Europium-cadmium organic framework with zwitterionic ligand exhibiting tunable luminescence, CO2 adsorption and dye degradation. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Chen T, Zhao P, Li J, Sun Z, Huang W. Construction of a novel Co-based coordination polymer and its study of non-enzymatic glucose sensors. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Lippi M, Wadepohl H, Comba P, Cametti M. A Bispidine based CuII/ZnII Heterobimetallic Coordination Polymer. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Martina Lippi
- Politecnico di Milano Department of Chemistry, Materials and Chemical Engineering ITALY
| | - Hubert Wadepohl
- Heidelberg University Interdisciplinary Center of Scientific Computing GERMANY
| | - Peter Comba
- Heidelberg University Anorganisch-Chemisches Institut GERMANY
| | - Massimo Cametti
- Politecnico di Milano Dipartimento di Chimica, Materiali ed Ingegneria Chimica Via Luigi Mancinelli 7 20131 Milano ITALY
| |
Collapse
|
21
|
Theppitak C, Laksee S, Chainok K. Crystal structure and Hirshfeld surface analysis of tris-(acetohydrazide-κ 2 N, O)(nitrato-κ O)(nitrato-κ 2 O, O')terbium(III) nitrate. Acta Crystallogr E Crystallogr Commun 2022; 78:354-358. [PMID: 35492274 PMCID: PMC8983988 DOI: 10.1107/s2056989022002298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/27/2022] [Indexed: 11/17/2022]
Abstract
In the title lanthanide(III) compound, [Tb(NO3)2(C2H6N2O)3]NO3, the asym-metric unit contains one Tb3+ ion, three acetohydrazide (C2H6N2O) ligands, two coordinated nitrate anions, and an isolated nitrate anion. The Tb3+ ion is in a ninefold coordinated distorted tricapped trigonal-prismatic geometry formed by three oxygen atoms and three nitro-gen atoms from three different acetohydrazide ligands and three oxygen atoms from two nitrate anions. In the crystal, the complex mol-ecules and the non-coordinated nitrate anions are assembled into a three-dimensional supra-molecular architecture through extensive N-H⋯O hydrogen-bonding inter-actions between the amine NH groups of the acetohydrazide ligands and the nitrate oxygen atoms. Hirshfeld surface analysis was performed to aid in the visualization of inter-mol-ecular contacts.
Collapse
Affiliation(s)
- Chatphorn Theppitak
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani, 12121, Thailand
| | - Sakchai Laksee
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Ongkharak, Nakon Nayok, 26120, Thailand
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani, 12121, Thailand
| |
Collapse
|
22
|
San Esteban ACM, Kuwamura N, Yoshinari N, Konno T. Serendipitous formation of oxygen-bridged CuII6M (M = Mn II, Co II) double cubanes showing electrocatalytic water oxidation. Chem Commun (Camb) 2022; 58:4192-4195. [PMID: 35274119 DOI: 10.1039/d1cc07199h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxido-bridged CuII6M double-cubane clusters (M = MnII, CoII) supported by D-penicillaminedisulfide were unexpectedly formed by treating a D-penicillaminato CuII2PtII2 complex with MBr2 in water. The clusters displayed heterogeneous electrocatalytic activities for water oxidation dependent on the central M shared by two CuII cubane units.
Collapse
Affiliation(s)
| | - Naoto Kuwamura
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - Nobuto Yoshinari
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - Takumi Konno
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
23
|
|
24
|
San Esteban ACM, Kuwamura N, Yoshinari N, Konno T. A chromotropic Pt IIPd IICo II coordination polymer with dual electrocatalytic activity for water reduction and oxidation. Dalton Trans 2021; 50:14730-14737. [PMID: 34586126 DOI: 10.1039/d1dt02587b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Here, we present a heterometallic coordination polymer that exhibits heterogeneous electrocatalytic activities for both water reduction and water oxidation. Treatment of the PtII2PdII2 tetranuclear complex [Pd2{Pt(NH3)2(D-pen)2}2] ([1]; D-H2pen = D-penicillamine) with CoX2 (X = Cl, Br) provided (PtII2PdII2CoII2)n coordination polymers [Co2(H2O)6(1)]X4 ([2]X4), in which the PtII2PdII2 units of [1] are linked by [Co2(μ-H2O)(H2O)5]4+ moieties in a 3D network structure. [2]X4 showed a colour change from orange to dark green upon dehydration, reflecting the geometrical conversion of the CoII centres in [Co2(μ-H2O)(H2O)5]4+ from an octahedron to a tetrahedron by the removal of aqua ligands. While both [2]Cl4 and [2]Br4 electrochemically catalysed water reduction to H2 in the solid state due to the presence of PdII active centres, water oxidation to O2 was catalysed only by [2]Br4, which is ascribed to the presence of Br- ions that mediate the catalytic reactions that occurred at CoII active centres.
Collapse
Affiliation(s)
| | - Naoto Kuwamura
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - Nobuto Yoshinari
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - Takumi Konno
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
25
|
You LX, Cao SY, Guo Y, Wang SJ, Xiong G, Dragutan I, Dragutan V, Ding F, Sun YG. Structural insights into new luminescent 2D lanthanide coordination polymers using an N, N′-disubstituted benzimidazole zwitterion. Influence of the ligand. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Theppitak C, Jiajaroen S, Chongboriboon N, Chanthee S, Kielar F, Dungkaew W, Sukwattanasinitt M, Chainok K. Self-Assembly of 1D Double-Chain and 3D Diamondoid Networks of Lanthanide Coordination Polymers through In Situ-Generated Ligands: High-Pressure CO 2 Adsorption and Photoluminescence Properties. Molecules 2021; 26:4428. [PMID: 34361582 PMCID: PMC8347576 DOI: 10.3390/molecules26154428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/03/2022] Open
Abstract
Two new lanthanide-based coordination polymers, [Sm2(bzz)(ben)6(H2O)3]·0.5H2O (1) and [Eu(bbz)(ben)3] (2), were synthesized and characterized. The described products were formed from in situ-generated benzoate (ben) and N'-benzoylbenzohydrazide (bbz) ligands, which were the products of transformation of originally added benzhydrazide (bzz) under hydrothermal conditions. Compound 1 exhibits a one-dimensional (1D) double-chain structure built up from the connection of the central Sm3+ ions with a mixture of bzz and ben ligands. On the other hand, 2 features a 3D network with a 4-connected (66) dia topology constructed from dinuclear [Eu2(ben)6] secondary building units and bbz linkers. High-pressure CO2 sorption studies of activated 1 show that maximum uptake increases to exceptionally high values of 376.7 cm3 g-1 (42.5 wt%) under a pressure of 50 bar at 298 K with good recyclability. Meanwhile, 2 shows a typical red emission in the solid state at room temperature with the decay lifetime of 1.2 ms.
Collapse
Affiliation(s)
- Chatphorn Theppitak
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand; (C.T.); (S.J.); (N.C.); (S.C.)
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand
| | - Suwadee Jiajaroen
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand; (C.T.); (S.J.); (N.C.); (S.C.)
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand
| | - Nucharee Chongboriboon
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand; (C.T.); (S.J.); (N.C.); (S.C.)
| | - Songwuit Chanthee
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand; (C.T.); (S.J.); (N.C.); (S.C.)
| | - Filip Kielar
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Winya Dungkaew
- Department of Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand;
| | | | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand; (C.T.); (S.J.); (N.C.); (S.C.)
| |
Collapse
|
27
|
Zhang HR, Gu JZ, Kirillova MV, Kirillov AM. Metal–organic architectures designed from a triphenyl-pentacarboxylate linker: hydrothermal assembly, structural multiplicity, and catalytic Knoevenagel condensation. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00680k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Eight new metal(ii) coordination compounds driven by a triphenyl-pentacarboxylate linker were hydrothermally assembled and fully characterized. Their structural features and catalytic behavior were investigated.
Collapse
Affiliation(s)
- Hong-Rui Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jin-Zhong Gu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Marina V. Kirillova
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Alexander M. Kirillov
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Research Institute of Chemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya st, Moscow, 117198, Russian Federation
| |
Collapse
|