1
|
Shi C, Xu R, Suo T, Shi X, Luo S, Yun R. Redistribution of Electron Density for Promoting CO 2 Conversion Capacity. Inorg Chem 2024. [PMID: 39689961 DOI: 10.1021/acs.inorgchem.4c04169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
There is a need to design substrate-supported catalysts for the heterogeneous fields, especially with large porosity, which can facilitate mass transport. Herein, aiming at enhancing the performance of CO2 fixation, a hollow carbon sphere-supported catalyst of FeNPs/HCS (FeNPs, Fe nanoparticles; HCS, hollow carbon sphere) is facilely designed and fabricated. Excitingly, the experimental and calculation results reveal that FeNPs/HCS displays an ultrahigh activity with almost complete conversions in CO2 cycloaddition, surpassing the performance of FeNPs/CS (CS, carbon sphere); this demonstrates that the HCS plays a key role, which may be attributed to the hollow structure tuning the electron density and enhancing the enrichment of the substrate and CO2, consequently lowering the barrier associated with mass transfer. The work not only provides a novel strategy to construct an efficient catalyst but also proposes, for the first time, an electron redistribution tactic to influence the catalytic process for CO2 cycloaddition.
Collapse
Affiliation(s)
- Changsong Shi
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, China
| | - Ruiming Xu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, China
| | - Ting Suo
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, China
| | - Xiang Shi
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, China
| | - Shizhong Luo
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, China
| | - Ruirui Yun
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, China
| |
Collapse
|
2
|
Paul R, Das R, Das N, Chakraborty S, Pao CW, Thang Trinh Q, Kalhara Gunasooriya GTK, Mondal J, Peter SC. Tweaking Photo CO 2 Reduction by Altering Lewis Acidic Sites in Metalated-Porous Organic Polymer for Adjustable H 2 /CO Ratio in Syngas Production. Angew Chem Int Ed Engl 2023; 62:e202311304. [PMID: 37872849 DOI: 10.1002/anie.202311304] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
Herein, we have specifically designed two metalated porous organic polymers (Zn-POP and Co-POP) for syngas (CO+H2 ) production from gaseous CO2 . The variable H2 /CO ratio of syngas with the highest efficiency was produced in water medium (without an organic hole scavenger and photosensitizer) by utilizing the basic principle of Lewis acid/base chemistry. Also, we observed the formation of entirely different major products during photocatalytic CO2 reduction and water splitting with the help of the two catalysts, where CO (145.65 μmol g-1 h-1 ) and H2 (434.7 μmol g-1 h-1 ) production were preferentially obtained over Co-POP & Zn-POP, respectively. The higher electron density/better Lewis basic nature of Co-POP was investigated further using XPS, XANES, and NH3 -TPD studies, which considerably improve CO2 activation capacity. Moreover, the structure-activity relationship was confirmed via in situ DRIFTS and DFT studies, which demonstrated the formation of COOH* intermediate along with the thermodynamic feasibility of CO2 reduction over Co-POP while water splitting occurred preferentially over Zn-POP.
Collapse
Affiliation(s)
- Ratul Paul
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Risov Das
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre forAdvanced Scientific Research, Jakkur, Bangalore-560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| | - Nitumani Das
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Subhajit Chakraborty
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre forAdvanced Scientific Research, Jakkur, Bangalore-560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Centre, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Quang Thang Trinh
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, 4111, Australia
| | | | - John Mondal
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sebastian C Peter
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre forAdvanced Scientific Research, Jakkur, Bangalore-560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| |
Collapse
|
3
|
Fajal S, Dutta S, Ghosh SK. Porous organic polymers (POPs) for environmental remediation. MATERIALS HORIZONS 2023; 10:4083-4138. [PMID: 37575072 DOI: 10.1039/d3mh00672g] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Modern global industrialization along with the ever-increasing growth of the population has resulted in continuous enhancement in the discharge and accumulation of various toxic and hazardous chemicals in the environment. These harmful pollutants, including toxic gases, inorganic heavy metal ions, anthropogenic waste, persistent organic pollutants, toxic dyes, pharmaceuticals, volatile organic compounds, etc., are destroying the ecological balance of the environment. Therefore, systematic monitoring and effective remediation of these toxic pollutants either by adsorptive removal or by catalytic degradation are of great significance. From this viewpoint, porous organic polymers (POPs), being two- or three-dimensional polymeric materials, constructed from small organic molecules connected with rigid covalent bonds have come forth as a promising platform toward various leading applications, especially for efficient environmental remediation. Their unique chemical and structural features including high stability, tunable pore functionalization, and large surface area have boosted the transformation of POPs into various macro-physical forms such as thick and thin-film membranes, which led to a new direction in advanced level pollutant removal, separation and catalytic degradation. In this review, our focus is to highlight the recent progress and achievements in the strategic design, synthesis, architectural-engineering and applications of POPs and their composite materials toward environmental remediation. Several strategies to improve the adsorption efficiency and catalytic degradation performance along with the in-depth interaction mechanism of POP-based materials have been systematically summarized. In addition, evolution of POPs from regular powder form application to rapid and more efficient size and chemo-selective, "real-time" applicable membrane-based application has been further highlighted. Finally, we put forward our perspective on the challenges and opportunities of these materials toward real-world implementation and future prospects in next generation remediation technology.
Collapse
Affiliation(s)
- Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
- Centre for Water Research, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
4
|
Yin M, Wang L, Tang S. Amino-Functionalized Ionic-Liquid-Grafted Covalent Organic Frameworks for High-Efficiency CO 2 Capture and Conversion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55674-55685. [PMID: 36495275 DOI: 10.1021/acsami.2c18226] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Rationally integrating desired functional components into a composite material can endow the tailored function to achieve the corresponding purpose. This is the first case where a series of [AeImBr]X%-TAPT-COFs (X = 0, 17, 33, 50, 67, 83, 100) were fabricated by chemically integrating the amino-functionalized imidazole ionic liquid (NH2-IL) onto channel walls of mesoporous covalent organic framework materials ([HO]X%-TAPT-COFs). By virtue of the polar groups (amino groups) and abundant imidazole cations of NH2-IL and its microporous nature, the obtained [AeImBr]X%-TAPT-COFs exhibit higher CO2 capture activity than [HO]X%-TAPT-COFs. Correspondingly, the CO2 equilibrium capture capacity increases from 62.6 to 117.4 mg/g, which is crucial to the storage of enough CO2 around the catalytic active sites. Additionally, the synergistic effect of -NH2 and Br- in NH2-IL can also improve the cycloaddition reaction rate. The characteristics of [AeImBr]X%-TAPT-COFs contribute to the efficient generation of cyclic carbonate through heterogeneously catalyzing CO2-epoxide cycloaddition without any solvents and cocatalysts. Specifically, [AeImBr]83%-TAPT-COF has a CO2 equilibrium capture capacity of 117.4 mg/g and cyclochloroallyl carbonate yield of 99.1%. As a result of the use of the chemical grafting method, [AeImBr]X%-TAPT-COFs possess excellent stability and cycle life. The equilibrium capture capacity and cyclochloroallyl carbonate yield reach 112.7 mg CO2/g adsorbent and 95.0% at the eighth cycle.
Collapse
Affiliation(s)
- Meilin Yin
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin300354, China
| | - Lipeng Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin300354, China
| | - Shaokun Tang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin300354, China
| |
Collapse
|
5
|
Synthesis of 3D Cadmium(II)-Carboxylate Framework Having Potential for Co-Catalyst Free CO2 Fixation to Cyclic Carbonates. INORGANICS 2022. [DOI: 10.3390/inorganics10100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Metal-organic frameworks (MOFs) are porous coordination polymers with interesting structural frameworks, properties, and a wide range of applications. A novel 3D cadmium(II)-carboxylate framework, CdMOF ([Cd2(L)(DMF)(H2O)2]n), was synthesized by the solvothermal method using a tetracarboxylic bridging linker having amide functional moieties. The CdMOF crystal structure exists in the form of a 3D layer structure. Based on the single-crystal X-ray diffraction studies, the supramolecular assembly of CdMOF is explored by Hirshfeld surface analysis. The voids and cavities analysis is performed to check the strength of the crystal packing in CdMOF. The CdMOF followed a multistage thermal degradation pattern in which the solvent molecules escaped around 200 °C and the structural framework remained stable till 230 °C. The main structural framework collapsed (>60 wt.%) into organic volatiles between 400–550 °C. The SEM morphology analyses revealed uniform wedge-shaped rectangular blocks with dimensions of 25–100 μm. The catalytic activity of CdMOF for the solvent and cocatalyst-free cycloaddition of CO2 into epichlorohydrin was successful with 100% selectivity. The current results revealed that this 3D CdMOF is more active than the previously reported CdMOFs and, more interestingly, without using a co-catalyst. The catalyst was easily recovered and reused, having the same performance.
Collapse
|
6
|
Xu YT, Ye ZM, Liu DX, Tian XY, Zhou DD, He CT, Chen XM. Non-3d metal modulated zinc imidazolate frameworks for CO2 cycloaddition in simulated flue gas under ambient condition. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Giri A, Patra A. Porous Organic Polymers: Promising Testbed for Heterogeneous Reactive Oxygen Species Mediated Photocatalysis and Nonredox CO 2 Fixation. CHEM REC 2022; 22:e202200071. [PMID: 35675959 DOI: 10.1002/tcr.202200071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/07/2022]
Abstract
Catalysts play a pivotal role in achieving the global need for food and energy. In this context, porous organic polymers (POPs) with high surface area, robust architecture, tunable pore size, and chemical functionalities have emerged as promising testbeds for heterogeneous catalysis. Amorphous POPs having functionalized interconnected hierarchical porous structures activate a diverse range of substrates through covalent/non-covalent interactions or act as a host matrix to encapsulate catalytically active metal centers. On the other hand, conjugated POPs have been explored for photoinduced chemical transformations. In this personal account, we have delineated the evolution of various POPs and the specific role of pores and pore functionalities in heterogeneous catalysis. Subsequently, we retrospect our journey over the last ten years towards designing and fabricating amorphous POPs for heterogeneous catalysis, specifically photocatalytic reactive oxygen species (ROS)-mediated organic transformations and nonredox chemical fixation of CO2 . We have also outlined some of the future avenues of POPs and POP-based hybrid materials for diverse catalytic applications.
Collapse
Affiliation(s)
- Arkaprabha Giri
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462066, Madhya Pradesh, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462066, Madhya Pradesh, India
| |
Collapse
|
8
|
Zhou S, Yan G, Gao B, Jiang W, Liu B, Zhou T, Liu C, Che G. A layered Mn-based coordination polymer as an efficient heterogeneous catalyst for CO 2 cycloaddition under mild conditions. CrystEngComm 2022. [DOI: 10.1039/d2ce00579d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A layered coordination polymer has been constructed by using a semi-rigid ligand, exhibiting a robust catalytic activity toward the cycloaddition of CO2 with epoxides.
Collapse
Affiliation(s)
- Shi Zhou
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, P. R. China
| | - Guosong Yan
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, P. R. China
| | - Baihui Gao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, P. R. China
| | - Wei Jiang
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, P. R. China
- College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, P. R. China
| | - Bo Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, P. R. China
| | - Tianyu Zhou
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, P. R. China
- College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, P. R. China
| | - Chunbo Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, P. R. China
- College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, P. R. China
| | - Guangbo Che
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, P. R. China
- Baicheng Normal University, Baicheng, 137000, P. R. China
| |
Collapse
|