1
|
Dishi O, Rahav Y, Gidron O. π-Conjugated oligofuran macrocycles. Chem Commun (Camb) 2024; 60:522-529. [PMID: 38109063 DOI: 10.1039/d3cc05225g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
This Feature Article overviews a new class of π-conjugated materials - macrocyclic furans. Starting from their synthesis, we review their unique structural, optical and electronic properties, chemical reactivity, and potential application as synthons. Finally, we discuss the study of oligofuran macrocycles as a model system for exploring the concept of global aromaticity and the size limitation of Hückel's rule in neutral macrocycles.
Collapse
Affiliation(s)
- Or Dishi
- The Hebrew University of Jerusalem, Edmond J. Safra Campus, 9190401, Jerusalem, Israel.
| | - Yuval Rahav
- The Hebrew University of Jerusalem, Edmond J. Safra Campus, 9190401, Jerusalem, Israel.
| | - Ori Gidron
- The Hebrew University of Jerusalem, Edmond J. Safra Campus, 9190401, Jerusalem, Israel.
| |
Collapse
|
2
|
Rahav Y, Rajagopal SK, Dishi O, Bogoslavsky B, Gidron O. Alternating behavior in furan-acetylene macrocycles reveals the size-dependency of Hückel's rule in neutral molecules. Commun Chem 2023; 6:100. [PMID: 37244950 DOI: 10.1038/s42004-023-00902-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023] Open
Abstract
Aromaticity can be assigned by Hückel's rule, which predicts that planar rings with delocalized (4n + 2) π-electrons are aromatic, whereas those with 4n π-electrons are antiaromatic. However, for neutral rings, the maximal value of "n" to which Hückel's rule applies remains unknown. Large macrocycles exhibiting global ring current can serve as models for addressing this question, but the global ring current are often overshadowed in these molecules by the local ring current of the constituent units. Here, we present a series of furan-acetylene macrocycles, ranging from the pentamer to octamer, whose neutral states display alternating contributions from global aromatic and antiaromatic ring currents. We find that the odd-membered macrocycles display global aromatic characteristics, whereas the even-membered macrocycles display contributions from globally antiaromatic ring current. These factors are expressed electronically (oxidation potentials), optically (emission spectra), and magnetically (chemical shifts), and DFT calculations predict global ring current alternations up to 54 π-electrons.
Collapse
Affiliation(s)
- Yuval Rahav
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Shinaj K Rajagopal
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Or Dishi
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Benny Bogoslavsky
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Ori Gidron
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel.
| |
Collapse
|
3
|
Wang K, Xu Y, Wang J. Palladium-Catalyzed Cyclizative Borylation of Allenyl Ketones through Carbene Boryl Migratory Insertion: Access to Densely Substituted Furyl Boronates. Chemistry 2023; 29:e202203697. [PMID: 36448967 DOI: 10.1002/chem.202203697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Herein the palladium-catalyzed cyclizative borylation of allenyl ketones with diboron compounds is reported which involves the carbene boryl migratory insertion as the key step. This reaction features mild conditions, good functional group tolerance and broad substrate scope. Thus, it represents an efficient methodology for the assembly of diverse tri-substituted furyl boronates. In addition, a series of transformations of the resultant multi-substituted furyl boronates were conducted to provide various densely substituted furan derivatives in good yields, further illustrating the potential synthetic utility of this methodology.
Collapse
Affiliation(s)
- Kang Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, 100871, Beijing, China
| | - Yan Xu
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, 100871, Beijing, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, 100871, Beijing, China.,The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, China
| |
Collapse
|
4
|
Alahmadi AF, Yin X, Lalancette RA, Jäkle F. Synthesis and Structure-Property Relationships in Regioisomeric Alternating Borane-Terthiophene Polymers. Chemistry 2022; 29:e202203619. [PMID: 36562302 DOI: 10.1002/chem.202203619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Main-chain boron-containing π-conjugated polymers are attractive for organic electronic, sensing, and imaging applications. Alternating terthiophene-borane polymers were prepared and the effects of regioisomeric attachment of the conjugated linker and variations in the electronic effect of the pendent aryl groups (2,4,6-tri-tert-butylphenyl, Mes*; 2,4,6-tris(trifluoromethyl)phenyl, FMes) examined. Pd2 dba3 /P(t-Bu)3 -catalyzed Stille polymerization of arylbis(2-thienyl)borane and arylbis(3-thienylborane) with 2,5-bis(trimethylstannyl)thiophene at 120 °C gave polymers with appreciable molecular weight but MALDI-TOF MS analyses showed evidence of unusually prominent homocoupling. These defects could be suppressed by using brominated rather than iodinated monomers, more hindered 2,5-bis(tri-n-butylstannyl)thiophene as comonomer, and Pd2 dba3 /P(o-tol)3 as the catalyst at 100 °C. Under these conditions, macrocyclic species with n=3-10 repeating units formed preferentially according to MALDI-TOF MS analyses. Photophysical studies revealed a prominent effect of the regiochemistry and the nature of the pendent aryl groups on the absorption and emission, giving rise to orange, yellow-green, blue-green, and blue emissive materials respectively. The electronic effects were rationalized through DFT calculations on bis(terthiophene) model systems.
Collapse
Affiliation(s)
- Abdullah F Alahmadi
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, 07102, Newark, NJ, USA
| | - Xiaodong Yin
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, 07102, Newark, NJ, USA.,Current address: Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/, Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, P. R. China
| | - Roger A Lalancette
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, 07102, Newark, NJ, USA
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, 07102, Newark, NJ, USA
| |
Collapse
|
5
|
Bachmann J, Helbig A, Crumbach M, Krummenacher I, Braunschweig H, Helten H. Fusion of Aza- and Oxadiborepins with Furans in a Reversible Ring-Opening Process Furnishes Versatile Building Blocks for Extended π-Conjugated Materials. Chemistry 2022; 28:e202202455. [PMID: 35943830 PMCID: PMC9825880 DOI: 10.1002/chem.202202455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 01/11/2023]
Abstract
A modular synthesis of both difurooxa- and difuroazadiborepins from a common precursor is demonstrated. Starting from 2,2'-bifuran, after protection of the positions 5 and 5' with bulky silyl groups, formation of the novel polycycles proceeds through opening of the furan rings to a dialkyne and subsequent re-cyclization in the borylation step. The resulting bifuran-fused diborepins show pronounced stability, highly planar tricyclic structures, and intense blue light emission. Deprotection and transformation into dibrominated building blocks that can be incorporated into π-extended materials can be performed in one step. Detailed DFT calculations provide information about the aromaticity of the constituent rings of this polycycle.
Collapse
Affiliation(s)
- Jonas Bachmann
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Andreas Helbig
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Merian Crumbach
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Helten
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
6
|
Dishi O, Rahav Y, Carmieli R, Gidron O. A Macrocyclic Furan with Accessible Oxidation States: Switching Between Aromatic and Antiaromatic Global Ring Currents. Chemistry 2022; 28:e202202082. [PMID: 35932151 PMCID: PMC9826138 DOI: 10.1002/chem.202202082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 01/11/2023]
Abstract
Macrocyclic furans are predicted to switch between global aromaticity and antiaromaticity, depending on their oxidation states. However, the macrocyclic furans reported to date are stabilized by electron withdrawing groups, which result in inaccessible oxidation states. To circumvent this problem, a post-macrocyclization approach was applied to introduce methylene-substituted macrocyclic furans, which display an extremely low oxidation potential of -0.23 vs. Fc/Fc+ , and are partially oxidized in ambient conditions. Additional oxidation to the dication results in aromaticity switching to a global 30πe- aromatic state, as indicated by the formation of a strong diatropic current observed in the 1 H NMR spectrum. NICS and ACID calculations support this trend and provide evidence for a different pathway for the global current in the neutral and dicationic states. According to these findings, macrocyclic furans can be rendered as promising p-type materials with stable oxidation states.
Collapse
Affiliation(s)
- Or Dishi
- Institute of ChemistryThe Hebrew University of JerusalemEdmond J. Safra CampusJerusalem9190401Israel
| | - Yuval Rahav
- Institute of ChemistryThe Hebrew University of JerusalemEdmond J. Safra CampusJerusalem9190401Israel
| | - Raanan Carmieli
- Chemical Research Support UnitWeizmann Institute of ScienceRehovot7610001Israel
| | - Ori Gidron
- Institute of ChemistryThe Hebrew University of JerusalemEdmond J. Safra CampusJerusalem9190401Israel
| |
Collapse
|
7
|
Dishi O, Malakar P, Shimon LJW, Ruhman S, Gidron O. Ring Size Determines the Conformation, Global Aromaticity and Photophysical Properties of Macrocyclic Oligofurans. Chemistry 2021; 27:17794-17801. [PMID: 34747542 DOI: 10.1002/chem.202103536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Indexed: 11/09/2022]
Abstract
In π-conjugated macrocycles, there is a trade-off between the global and local expression of effects such as aromaticity, with the outcome of the trade-off determined by the geometry and aromaticity of the constituent units. Compared with other aromatic rings, the aromatic character of furan is relatively small, and therefore global effects in macrocyclic furans are expected to be more pronounced. Following our introduction of macrocyclic oligofuran, we present the first synthesis of a series of π-conjugated bifuran macrocycles of various ring sizes, from trimer to hexamer, and characterize them using both computational and experimental methods. The properties of macrocyclic oligofurans change considerably with size: The smaller trimer is rigid, weakly emissive and planar as revealed by its single crystal structure, and displays global antiaromaticity. In contrast, the larger pentamer and hexamer are flexible, emissive, have non-planar structures, and exhibit local aromaticity. The results are supported by NICS and ACID calculations that indicate the global antiaromaticity of planar furan macrocycles, and by transient absorption measurements showing sharp absorption band for the trimer and only the internal conversion decay pathway.
Collapse
Affiliation(s)
- Or Dishi
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Partha Malakar
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Linda J W Shimon
- Chemical Research Support Unit, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sanford Ruhman
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Ori Gidron
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| |
Collapse
|
8
|
Matsuura BS, Huss S, Zheng Z, Yuan S, Wang T, Chen B, Badding JV, Trauner D, Elacqua E, van Duin ACT, Crespi VH, Schmidt-Rohr K. Perfect and Defective 13C-Furan-Derived Nanothreads from Modest-Pressure Synthesis Analyzed by 13C NMR. J Am Chem Soc 2021; 143:9529-9542. [PMID: 34130458 DOI: 10.1021/jacs.1c03671] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The molecular structure of nanothreads produced by the slow compression of 13C4-furan was studied by advanced solid-state NMR. Spectral editing showed that >95% of carbon atoms were bonded to one hydrogen (C-H) and that there were 2-4% CH2, 0.6% C═O, and <0.3% CH3 groups. Alkenes accounted for 18% of the CH moieties, while trapped, unreacted furan made up 7%. Two-dimensional (2D) 13C-13C and 1H-13C NMR identified 12% of all carbon in asymmetric O-CH═CH-CH-CH- and 24% in symmetric O-CH-CH═CH-CH- rings. While the former represented defects or chain ends, some of the latter appeared to form repeating thread segments. Around 10% of carbon atoms were found in highly ordered, fully saturated nanothread segments. Unusually slow 13C spin-exchange with sites outside the perfect thread segments documented a length of at least 14 bonds; the small width of the perfect-thread signals also implied a fairly long, regular structure. Carbons in the perfect threads underwent relatively slow spin-lattice relaxation, indicating slow spin exchange with other threads and smaller amplitude motions. Through partial inversion recovery, the signals of the perfect threads were observed and analyzed selectively. Previously considered syn-threads with four different C-H bond orientations were ruled out by centerband-only detection of exchange NMR, which was, on the contrary, consistent with anti-threads. The observed 13C chemical shifts were matched well by quantum-chemical calculations for anti-threads but not for more complex structures like syn/anti-threads. These observations represent the first direct determination of the atomic-level structure of fully saturated nanothreads.
Collapse
Affiliation(s)
- Bryan S Matsuura
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Steven Huss
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhaoxi Zheng
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Shichen Yuan
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Tao Wang
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bo Chen
- Donostia International Physics Center, Paseo Manuel de Lardizabal, 4, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - John V Badding
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dirk Trauner
- Department of Chemistry, New York University, New York, New York 10003, United States
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York 10016, United States
- NYU Neuroscience Institute, New York University School of Medicine, New York, New York 10016, United States
| | - Elizabeth Elacqua
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Adri C T van Duin
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Vincent H Crespi
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|