1
|
Gu X, Dai M, Qing X, Liu Y, Zhang Z, Wei Z, Liang T. Iron-Catalyzed Friedel-Crafts-type 3,5-Diacylation of Indoles. J Org Chem 2024; 89:10272-10282. [PMID: 38967436 DOI: 10.1021/acs.joc.4c01157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The exploration of remote functionalization of indoles is impeded by the inherently dominant reactivity intrinsic to the pyrrole moiety. Herein, we delineate a novel strategy facilitated by Lewis acid mediation, enabling the remote C-H functionalization, which culminates in the synthesis of an array of selectively functionalized indole derivatives, encompassing 3-trifluoroacetyl and 5-benzoyl motifs, utilizing trifluoroacetic anhydride and various acyl chlorides. Notably, the protocol exhibits versatility, as epitomized by the extension of C5-acylation to alkylation and sulfonation reactions. This methodology is distinguished by its exemplary regio- and chemo-selectivity, extensive substrate scope, commendable tolerance to a diverse array of functional groups, and the employment of comparatively mild reaction conditions.
Collapse
Affiliation(s)
- Xiaoting Gu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Maoyi Dai
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Xirui Qing
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Yifeng Liu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zhuan Zhang
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zongwu Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Taoyuan Liang
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
2
|
Liu Y, Gu X, Zhang X, Xu M, Zhang Z, Liang T. Iodine-mediated oxidative triple functionalization of indolines with azoles and diazonium salts. Chem Commun (Camb) 2024; 60:4613-4616. [PMID: 38587256 DOI: 10.1039/d4cc00856a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
We report an innovative synthetic strategy for the generation of polysubstituted indoles from indolines, aryldiazonium salts, and azoles. The methodology encompasses an electrophilic substitution reaction affording C5-indoline intermediates which undergo an iodine-mediated oxidative transformation coupled with C-H functionalization to yield the indole derivatives.
Collapse
Affiliation(s)
- Yifeng Liu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Xiaoting Gu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Xiaoxiang Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Meilan Xu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Zhuan Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Taoyuan Liang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| |
Collapse
|
3
|
Liu G, Zheng M, Tian R, Zhou Y. Site-Selective Synthesis of Antitumor C5-Aminated Indoles via Neighboring Aldehyde Group Assisted Catellani Reaction. Org Lett 2023; 25:9231-9236. [PMID: 38105532 DOI: 10.1021/acs.orglett.3c03932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
A palladium/norbornene (NBE) cooperative catalytic system was developed to access C5-aminated indoles, starting from readily available C4-idonated indoles. Good yields and exclusive site selectivity were achieved for a broad substrate scope, including drug molecule core architectures. Control experiments found that both aldehyde on the C3 position and sulfonyl protecting group on the N1 position were vital for the transformation. Preliminary bioactivity evaluation identified a promising leading compound 3af with potent antitumor proliferative activity against several cancer cells.
Collapse
Affiliation(s)
- Guangyuan Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengzhu Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rong Tian
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yirong Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Li W, Liu J, Zhou M, Ma L, Zhang M. Visible light-enabled regioselective chlorination of coumarins using CuCl 2via LMCT excitation. Org Biomol Chem 2022; 20:6667-6672. [PMID: 35943174 DOI: 10.1039/d2ob01134d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient, regioselective chlorination of coumarins using Earth-abundant and cost-effective CuCl2 under visible light irradiation is reported. A key feature of this protocol is the photocatalytic dissociation of the copper(II) complex in acetonitrile through ligand-to-metal charge transfer (LMCT) to give the chlorine atom which then selectively chlorinates the coumarin. This method can chlorinate a broad scope of coumarins with either electron-withdrawing or electron-donating substituents to regioselectively afford 3-chlorocoumarins in good to excellent yields and can be further extended to other electron-deficient heterocycles and olefins such as flavones, 8-methoxypsoralen and naphthoquinones.
Collapse
Affiliation(s)
- Weiming Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Jinshan Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Min Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Lin Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Min Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
5
|
Zhang ML, Zhang XL, Guo RL, Wang MY, Zhao BY, Yang JH, Jia Q, Wang YQ. Switchable, Reagent-Controlled C(sp 3)-H Selective Iodination and Acetoxylation of 8-Methylquinolines. J Org Chem 2022; 87:5730-5743. [PMID: 35471034 DOI: 10.1021/acs.joc.2c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient Pd-catalyzed C(sp3)-H selective iodination of 8-methylquinolines is reported herein for the first time. Because of the versatility of organic iodides, the method offers a facile access to various C8-substituted quinolines. By slightly switching the reaction conditions, an efficient C(sp3)-H acetoxylation of 8-methylquinolines has also been enabled. Both approaches feature mild reaction conditions, good tolerance of functional groups, and a broad substrate scope.
Collapse
Affiliation(s)
- Ming-Lu Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xing-Long Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Rui-Li Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Meng-Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Bao-Yin Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Jin-Hui Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Yinchuan 750021, P. R. China
| | - Qiong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yong-Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|