1
|
Liu C, Cai Z, Luo J, Wu L, He L. Arynes Promoted Dehydrosulfurization of Thioamides: Access to Nitriles and Diaryl Sulfides. Org Lett 2024; 26:7678-7682. [PMID: 39214529 DOI: 10.1021/acs.orglett.4c02796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
An aryne-promoted dehydrosulfurization reaction of thioamides to give nitriles and diaryl sulfides in a one-pot manner is presented. Aromatic, heteroaromatic, and aliphatic natural products and drug-derived nitriles and diaryl sulfides were obtained in good to excellent yields. Especially, selenoamide was also a suitable substrate and produced diaryl selenide and nitrile in high yields. The D-labeled experiments indicated that the protons of thioamides transfer to diaryl sulfides.
Collapse
Affiliation(s)
- Cuicui Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Zhihua Cai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Jinyun Luo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Leifang Wu
- Analysis and Testing Center of Shihezi University, Xinjiang Uygur Autonomous Region, 832000, P. R. China
| | - Lin He
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| |
Collapse
|
2
|
Yu SW, Chen ZJ, Li HQ, Li WX, Li Y, Li Z, Wang ZY. Oxysulfonylation of Alkynes with Sodium Sulfinates to Access β-Keto Sulfones Catalyzed by BF 3·OEt 2. Molecules 2024; 29:3559. [PMID: 39124964 PMCID: PMC11314596 DOI: 10.3390/molecules29153559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
An efficient and operationally simple method for the synthesis of β-keto sulfones through the BF3·OEt2-promoted reaction of alkynes and sodium sulfinates is developed. With its facile and selective access to the targets, it features good functional group compatibility, mild conditions, easily available starting materials, and good yields. Notably, the reaction does not require metal catalysts or chemical reagents with pungent odors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; (S.-W.Y.); (Z.-J.C.); (H.-Q.L.); (W.-X.L.); (Y.L.); (Z.L.)
| |
Collapse
|
3
|
Das A, Justin Thomas KR. Generation and Application of Aryl Radicals Under Photoinduced Conditions. Chemistry 2024; 30:e202400193. [PMID: 38546345 DOI: 10.1002/chem.202400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Indexed: 04/26/2024]
Abstract
Photoinduced aryl radical generation is a powerful strategy in organic synthesis that facilitates the formation of diverse carbon-carbon and carbon-heteroatom bonds. The synthetic applications of photoinduced aryl radical formation in the synthesis of complex organic compounds, including natural products, physiologically significant molecules, and functional materials, have received immense attention. An overview of current developments in photoinduced aryl radical production methods and their uses in organic synthesis is given in this article. A generalized idea of how to choose the reagents and approach for the generation of aryl radicals is described, along with photoinduced techniques and associated mechanistic insights. Overall, this article offers a critical assessment of the mechanistic results as well as the selection of reaction parameters for specific reagents in the context of radical cascades, cross-coupling reactions, aryl radical functionalization, and selective C-H functionalization of aryl substrates.
Collapse
Affiliation(s)
- Anupam Das
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - K R Justin Thomas
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
4
|
Tang LJ, Zhu WC, Deng HH, Jiang YF, Liu XY, Rao W, Shen SS, Song P, Wang SY. Visible Light-Catalyzed Reactions of Polysulfide (DBSPS) with Aryldiazonium. Chem Asian J 2024:e202400086. [PMID: 38676953 DOI: 10.1002/asia.202400086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Indexed: 04/29/2024]
Abstract
A visible light-catalyzed radical coupling reaction of polysulfide reagents with aryldiazonium was developed, which gave thiosulfonates under mild conditions. In this reaction, the thiosulfonates were isolated in good yields with a broad tolerance to functional groups. And the synthesis of diaryl monosulfides were achieved through a step-by-step reaction of two molecular aryldiazonium with DBSPS, where the sulfur source was provided by DBSPS. It was worth noting that the reaction of this monosulfides could also be achieved by a one pot two-step process. The described polysulfide reagents were able to produce three new radicals: sulfonyl radicals, sulfur-sulfonyl radicals and sulfur-sulfur-sulfonyl radicals.
Collapse
Affiliation(s)
- Ling-Juan Tang
- Analysis and Testing Center, Nantong University, No.1 Nanhai Road, Nantong, 226019, People's Republic of China
| | - Wei-Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215000, People's Republic of China
| | - Hong-He Deng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215000, People's Republic of China
| | - Yi-Fan Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215000, People's Republic of China
| | - Xin-Yu Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215000, People's Republic of China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210000, People's Republic of China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou, 215000, People's Republic of China
| | - Ping Song
- Analysis and Testing Center, Soochow University, 199 Ren'ai Road, Suzhou, 215000, People's Republic of China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215000, People's Republic of China
| |
Collapse
|
5
|
Lu HL, Jin JH, Liang SC, Feng CW, Li ZM, Zhao FG, Liu X, Shen YM. Photocatalytic Three-Component Reaction for the Synthesis of Multifunctional Diaryl Sulfides. J Org Chem 2023; 88:16547-16555. [PMID: 37971809 DOI: 10.1021/acs.joc.3c02048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A photocatalytic three-component reaction of a nitroarene, a thiophenol, and a ketone for the synthesis of multifunctional diaryl sulfides was reported using a nitro group as the nitrogen source and thiophenol as the sulfur source. Thiophenol also serves as a proton donor to reduce nitroarene to arylamine as a key intermediate for the formation of C-N and C-S bonds. Good functional group tolerance and mild reaction conditions make this method have practical synthetic value for diversified multifunctional diaryl sulfides.
Collapse
Affiliation(s)
- Hui-Ling Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Jia-Hui Jin
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Shang-Chuang Liang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Chuan-Wei Feng
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Zhi-Ming Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Fu-Gang Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, PR China
| | - Xunshan Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, PR China
| | - Yong-Miao Shen
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, PR China
| |
Collapse
|
6
|
Xie P, Zheng Y, Luo Y, Luo J, Wu L, Cai Z, He L. Synthesis of Sulfilimines via Multicomponent Reaction of Arynes, Sulfamides, and Thiosulfonates. Org Lett 2023; 25:6133-6138. [PMID: 37579216 DOI: 10.1021/acs.orglett.3c02217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In this work, a facile and efficient method for the synthesis of sulfilimines through multicomponent reaction of arynes, sulfamides, and thiosulfonates was developed. A variety of structurally diverse substrates and functional groups were very compatible in the reaction, giving the corresponding sulfilimines in good to high yields. This protocol could be conducted on a gram scale, and the product was easily converted to sulfide and sulfoximine. Mechanism studies revealed that sulfenamide generated in situ is the key intermediate for the reaction.
Collapse
Affiliation(s)
- Pei Xie
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Yating Zheng
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Yuping Luo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Jinyun Luo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Leifang Wu
- Analysis and Testing Center of Shihezi University, Shihezi University, Shihezi 832000, P. R. China
| | - Zhihua Cai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Lin He
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| |
Collapse
|
7
|
Jiang YF, Zhu WC, Liu XY, Tian SY, Han JH, Rao W, Shen SS, Sheng D, Wang SY. Synthesis of 1,3-Dibenzenesulfonylpolysulfane (DBSPS) and Its Application in the Preparation of Aryl Thiosulfonates from Boronic Acids. Org Lett 2023; 25:1776-1781. [PMID: 36867002 DOI: 10.1021/acs.orglett.3c00526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Herein, we provide a novel method for the synthesis of 1,3-dibenzenesulfonylpolysulfane (DBSPS), which further reacts with boronic acids to afford thiosulfonates. Commercially available boron compounds greatly expanded the range of thiosulfonates. Experimental and theoretical mechanistic investigations suggested that DBSPS could provide both thiosulfone fragments and dithiosulfone fragments, but the generated aryl dithiosulfonates were unstable and decomposed into thiosulfonates.
Collapse
Affiliation(s)
- Yi-Fan Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Wei-Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xin-Yu Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Shi-Yin Tian
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jia-Hui Han
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99, Xuefu Road, Huqiu District, Suzhou 215009, P. R. China
| | - Daopeng Sheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Wang X, Zhou W, Xie W, Chen Q, Wu J. Generation of (E)-β-trifluoromethyl vinylsulfonohydrazides under photocatalysis and their anti-bacteria activity. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Park J, Kim DY. Synthesis of selenated γ‐lactones via photoredox‐catalyzed selenylation and ring closure of alkenoic acids with diselenides. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiwoo Park
- Department of Chemistry Soonchunhyang University Asan Republic of Korea
- Department of ICT Environmental Health System Soonchunhyang University Asan South Korea
| | - Dae Young Kim
- Department of Chemistry Soonchunhyang University Asan Republic of Korea
- Department of ICT Environmental Health System Soonchunhyang University Asan South Korea
| |
Collapse
|
10
|
Zhang J, Yang Z, Yu JT, Pan C. Three-component synthesis of arylsulfonyl-substituted indolo[2,1- a]isoquinolinones and benzimidazo-[2,1- a]isoquinolin-6(5 H)-ones by SO 2 insertion and radical cascade cyclization. Org Biomol Chem 2022; 20:3067-3071. [PMID: 35348170 DOI: 10.1039/d2ob00409g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient arylsulfonylation/cyclization of 2-aryl-N-methacryloyl indoles with potassium metabisulfite and aryldiazonium tetrafluoroborates was developed. A series of variously substituted arylsulfonyl indolo[2,1-a]isoquinolin-6(5H)-ones were formed in moderate to good yields via utilization of the nature abundant inorganic salt potassium metabisulfite as a SO2 surrogate. Additionally, this three-component protocol can also be employed for the synthesis of arylsulfonyl-substituted benzimidazo-[2,1-a]isoquinolin-6(5H)-ones.
Collapse
Affiliation(s)
- Jie Zhang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Zixian Yang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|
11
|
Pandey AK, Chand S, Sharma AK, Singh KN. Iodine Catalyzed Sulfenylation of Sodium Sulfinates using Arenediazonium Tetrafluoroborate/CS2 Combination. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anand Kumar Pandey
- Banaras Hindu University Faculty of Science Chemistry Institute of Science 221005 Varanasi INDIA
| | - Shiv Chand
- Banaras Hindu University Faculty of Science Chemistry Institute of Science 221005 Varanasi INDIA
| | - Anup Kumar Sharma
- Banaras Hindu University Faculty of Science Chemistry Institute of Science 221005 Varanasi INDIA
| | - Krishna Nand Singh
- Banaras Hindu University Department of Chemistry Faculty of Science 221005 Varanasi INDIA
| |
Collapse
|
12
|
Coppola GA, Pillitteri S, Van der Eycken EV, You SL, Sharma UK. Multicomponent reactions and photo/electrochemistry join forces: atom economy meets energy efficiency. Chem Soc Rev 2022; 51:2313-2382. [PMID: 35244107 DOI: 10.1039/d1cs00510c] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Visible-light photoredox catalysis has been regarded as an extremely powerful tool in organic chemistry, bringing the spotlight back to radical processes. The versatility of photocatalyzed reactions has already been demonstrated to be effective in providing alternative routes for cross-coupling as well as multicomponent reactions. The photocatalyst allows the generation of high-energy intermediates through light irradiation rather than using highly reactive reagents or harsh reaction conditions. In a similar vein, organic electrochemistry has experienced a fruitful renaissance as a tool for generating reactive intermediates without the need for any catalyst. Such milder approaches pose the basis toward higher selectivity and broader applicability. In photocatalyzed and electrochemical multicomponent reactions, the generation of the radical species acts as a starter of the cascade of events. This allows for diverse reactivity and the use of reagents is usually not covered by classical methods. Owing to the availability of cheaper and more standardized photo- and electrochemical reactors, as well as easily scalable flow-setups, it is not surprising that these two fields have become areas of increased research interest. Keeping these in view, this review is aimed at providing an overview of the synthetic approaches in the design of MCRs involving photoredox catalysis and/or electrochemical activation as a crucial step with particular focus on the choice of the difunctionalized reagent.
Collapse
Affiliation(s)
- Guglielmo A Coppola
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium.
| | - Serena Pillitteri
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium.
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium. .,Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Upendra K Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium.
| |
Collapse
|
13
|
Hu L, Li J, Zhang Y, Feng X, Liu X. Enantioselective [1,2]-Stevens Rearrangement of Thiosulfonates to Construct Dithio-Substituted Quaternary Carbon Centers. Chem Sci 2022; 13:4103-4108. [PMID: 35440994 PMCID: PMC8985575 DOI: 10.1039/d2sc00419d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
An enantioselective [1,2] Stevens rearrangement was realized by using chiral guanidine and copper(i) complexes. Bis-sulfuration of α-diazocarbonyl compounds was developed through using thiosulfonates as the sulfenylating agent. It was undoubtedly an atom-economic process providing an efficient route to access novel chiral dithioketal derivatives, affording the corresponding products in good yields (up to 90% yield) and enantioselectivities (up to 96 : 4 er). A novel catalytic cycle was proposed to rationalize the reaction process and enantiocontrol. An asymmetric [1,2] Stevens rearrangement was realized via chiral guanidine and copper(i) complexes. A series of novel chiral dithioketal derivatives were obtained with good yields (up to 90% yield) and enantioselectivities (up to 96 : 4 er).![]()
Collapse
Affiliation(s)
- Linfeng Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Jinzhao Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Yongyan Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
14
|
Luo J, Lin M, Wu L, Cai Z, He L, Du G. The organocatalytic synthesis of perfluorophenylsulfides via the thiolation of trimethyl(perfluorophenyl)silanes and thiosulfonates. Org Biomol Chem 2021; 19:9237-9241. [PMID: 34647948 DOI: 10.1039/d1ob01350e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The organic superbase t-Bu-P4-catalyzed direct thiolation of trimethyl(perfluorophenyl)silanes and thiosulfonates was developed. Yields of perfluorophenylsulfides of up to 97% under catalysis of 5 mol% t-Bu-P4 were achieved. This method was shown to provide an efficient way to construct the perfluorophenyl-sulfur bond under mild metal-free reaction conditions.
Collapse
Affiliation(s)
- Jinyun Luo
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, China.
| | - Muze Lin
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, China.
| | - Leifang Wu
- Analysis and Testing Center of Shihezi University, Xinjiang Uygur Autonomous Region, 832000, China
| | - Zhihua Cai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, China.
| | - Lin He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, China.
| | - Guangfen Du
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, China.
| |
Collapse
|
15
|
Li X, Liu P, He J, Li W, Yang Z, Wei Y, Wei Y, Gu Y. TBAI-catalyzed ring-opening sulfonylations of benzothiazoles and arylsulfonyl hydrazides. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
16
|
Jang HY. Oxidative cross-coupling of thiols for S-X (X = S, N, O, P, and C) bond formation: mechanistic aspects. Org Biomol Chem 2021; 19:8656-8686. [PMID: 34596196 DOI: 10.1039/d1ob01368h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review focuses on the reactive intermediates (disulfides, sulfenyl halides, thiyl radicals, sulfenium cations, and metal-organosulfur species) and the mechanisms of the recently reported oxidative couplings of thiols. These intermediates are generated by chemical oxidants, transition metal catalysts, electrochemistry, and photochemistry. Chemical oxidant-mediated reactions involve radical, halogenated, or cationic intermediates, or disulfides. Transition metal-catalyzed mechanisms proposed various metal-organosulfur intermediates to elucidate the reactivity and selectivity of metal catalysts. In electro- and photooxidation, direct oxidation/reduction mechanisms of reactants at the electrode or indirect oxidation/reduction of reactants in the presence of redox catalysts have been reported. The following sections are based on the products, thiosulfonates (S-S bond), sulfenamides, sulfinamides, and sulfonamides (S-N bond), sulfinates (S-O bond), thiophosphine oxides and thiophosphates (S-P bond), and sulfides, sulfoxides, and sulfones (S-C bond) and discuss the reaction mechanisms and the above-mentioned key intermediates for product formation. The contents of this review will provide helpful information, guiding the choice of oxidative coupling conditions for the synthesis of various organosulfur compounds with high yields and selectivity.
Collapse
Affiliation(s)
- Hye-Young Jang
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
17
|
Lv Y, Luo J, Lin M, He L, Yue H, Liu R, Wei W. Metal‐Free Multi‐Component Sulfur Dioxide Insertion Reaction Leading to Quinoxalin‐2‐One‐Containing Vinyl Sulfones under Visible‐Light Photoredox Catalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yufen Lv
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering Shihezi University, Xinjiang Uygur Autonomous Region Shihezi 832000 People's Republic of China
- School of Chemistry and Chemical Engineering Qufu Normal University Qufu 273165, Shandong People's Republic of China
| | - Jinyun Luo
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering Shihezi University, Xinjiang Uygur Autonomous Region Shihezi 832000 People's Republic of China
| | - Muze Lin
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering Shihezi University, Xinjiang Uygur Autonomous Region Shihezi 832000 People's Republic of China
| | - Lin He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering Shihezi University, Xinjiang Uygur Autonomous Region Shihezi 832000 People's Republic of China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology Chinese Academy of Sciences Qinghai 810008 People's Republic of China
| | - Ruisheng Liu
- School of Chemistry and Chemical Engineering Qufu Normal University Qufu 273165, Shandong People's Republic of China
| | - Wei Wei
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology Chinese Academy of Sciences Qinghai 810008 People's Republic of China
- School of Chemistry and Chemical Engineering Qufu Normal University Qufu 273165, Shandong People's Republic of China
| |
Collapse
|
18
|
Patel BK, Sahoo AK, Dahiya A, Rakshit A. The Renaissance of Alkali Metabisulfites as SO2 Surrogates. SYNOPEN 2021. [DOI: 10.1055/a-1577-9755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AbstractThe upsurge of interest in the development of methodologies for the construction of sulfur-containing compounds via the use of expedient reagents has established sustainable tools in organic chemistry. This review focuses on sulfonylation reactions using inorganic sulfites (Na2S2O5 or K2S2O5) as the sulfur dioxide surrogates. Compared to the bis-adduct with DABCO, which is an excellent surrogate of gaseous SO2, the use of sodium or potassium metabisulfites as SO2 surrogates are equally efficient. The objective of the current review is to exemplify recent sulfonylation reactions using inorganic sulfites. For better understanding, the review is categorized according to the mode of reactions: transition-metal-catalyzed SO2 insertion, metal-free SO2 insertion, and visible-light-mediated SO2 insertion. All the reactions in each of the sections are illustrated with selected examples with a pertinent explanation of the proposed mechanism.1 Introduction2 Outlines of the Reactions Involving SO2 Insertion2.1 Transition-Metal-Catalyzed SO2 Insertion2.2 Transition-Metal-Free SO2 Insertion2.3 Visible-Light-Mediated SO2 Insertion3 Conclusion and Outlook
Collapse
|
19
|
Lv Y, Luo J, Lin M, Yue H, Dai B, He L. A visible-light photoredox-catalyzed four-component reaction for the construction of sulfone-containing quinoxalin-2(1 H)-ones. Org Chem Front 2021. [DOI: 10.1039/d1qo00816a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A visible-light photoredox-catalyzed four component reaction of quinoxalin-2(1H)-ones, alkenes, aryldiazonium, and sodium metabisulfite leading to sulfone-containing quinoxalin-2(1H)-ones has been developed.
Collapse
Affiliation(s)
- Yufen Lv
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| | - Jinyun Luo
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| | - Muze Lin
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, People's Republic of China
| | - Bin Dai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| | - Lin He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| |
Collapse
|
20
|
An Y, Zhang F, Du G, Cai Z, He L. Construction of 6 H-benzo[ c]thiochromenes via a tandem reaction of arynes with thionoesters. Org Chem Front 2021. [DOI: 10.1039/d1qo01177d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A mild and transition-metal free method has been proposed for the synthesis of 6H-benzo[c]thiochromenes via the tandem reactions of arynes with thionoesters.
Collapse
Affiliation(s)
- Yi An
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| | - Fang Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| | - Guangfen Du
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| | - Zhihua Cai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| | - Lin He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| |
Collapse
|