1
|
Meher P, Parida SK, Mahapatra SK, Roy L, Murarka S. Overriding Cage Effect in Electron Donor-Acceptor Photoactivation of Diaryliodonium Reagents: Synthesis of Chalcogenides. Chemistry 2024; 30:e202402969. [PMID: 39183717 DOI: 10.1002/chem.202402969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 08/27/2024]
Abstract
In recent times, diaryliodonium reagents (DAIRs) have witnessed a resurgence as arylating reagents, especially under photoinduced conditions. However, reactions proceeding through electron donor-acceptor (EDA) complex formation with DAIRs are restricted to electron-rich reacting partners serving as donors due to the well-known cage effect. We discovered a practical and high-yielding visible-light-induced EDA platform to generate aryl radicals from the corresponding DAIRs and use them to synthesize key chalcogenides. In this process, an array of DAIRs and dichalcogenides react in the presence of 1,4 diazabicyclo[2.2.2]octane (DABCO) as a cheap and readily available donor, furnishing a variety of di(hetero)aryl and aryl/alkyl chalcogenides in good yields. The method is scalable, features a broad scope with good yields, and operates under open-to-air conditions. The photoinduced chalcogenation technology is suitable for late-stage functionalizations and disulfide bioconjugations and facilitates access to biologically relevant thioesters, dithiocarbamates, sulfoximines, and sulfones. Moreover, the method applies to synthesizing diverse pharmaceuticals, such as vortioxetine, promazine, mequitazine, and dapsone, under amenable conditions.
Collapse
Affiliation(s)
- Prahallad Meher
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India
| | - Sushanta Kumar Parida
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India
| | - Sanat Kumar Mahapatra
- IOC Odisha Campus Bhubaneswar, Institute of Chemical Technology Mumbai, Bhubaneswar, 751013, India
| | - Lisa Roy
- IOC Odisha Campus Bhubaneswar, Institute of Chemical Technology Mumbai, Bhubaneswar, 751013, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India
| |
Collapse
|
2
|
Dash R, Panda SP, Bhati KS, Sharma S, Murarka S. Electrochemical C-H Alkylation of Azauracils Using N-(Acyloxy)phthalimides. Org Lett 2024; 26:7227-7232. [PMID: 39162265 DOI: 10.1021/acs.orglett.4c02662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
We present an electrochemical alkylation of azauracils using N-(acyloxy)phthalimides (NHPI esters) as readily available alkyl radical progenitors under metal- and additive-free conditions. Several azauracils are shown to undergo alkylation with an array of NHPI esters (1°, 2°, 3°, and sterically congested), providing the desired products in good to excellent yields. This operationally simple method is robust, scalable, and suitable for both batch and flow setups.
Collapse
Affiliation(s)
- Rupashri Dash
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Satya Prakash Panda
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Kuldeep Singh Bhati
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India
| | - Siddharth Sharma
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| |
Collapse
|
3
|
Hannam A, Kankraisri P, Thombare KR, Meher P, Jean A, Hilton ST, Murarka S, Arseniyadis S. Visible light-mediated difluoromethylation/cyclization in batch and flow: scalable synthesis of CHF 2-containing benzimidazo- and indolo[2,1- a]isoquinolin-6(5 H)-ones. Chem Commun (Camb) 2024; 60:7938-7941. [PMID: 38984848 DOI: 10.1039/d4cc02557a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
We report here a practical and cost-effective method for the synthesis of CHF2-containing benzimidazo- and indolo[2,1,a]-isoquinolin-6(5H)-ones through a visible light-mediated difluoromethylation/cyclization cascade. The method, which affords functionalized multifused N-heterocyclic scaffolds in moderate to high yields under mild reaction conditions, is also easily scalable using low-cost 3D printed photoflow reactors.
Collapse
Affiliation(s)
- Al Hannam
- Department of Chemistry, Queen Mary University of London, Mile End Road, E1 4NS, London, UK.
| | - Phinyada Kankraisri
- Department of Chemistry, Queen Mary University of London, Mile End Road, E1 4NS, London, UK.
| | - Karan R Thombare
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Prahallad Meher
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Alexandre Jean
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210, Bolbec, France
| | - Stephen T Hilton
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, WC1N 1AX, London, UK
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Stellios Arseniyadis
- Department of Chemistry, Queen Mary University of London, Mile End Road, E1 4NS, London, UK.
| |
Collapse
|
4
|
Hota SK, Singh G, Murarka S. Direct C-H alkylation of 3,4-dihydroquinoxaline-2-ones with N-(acyloxy)phthalimides via radical-radical cross coupling. Chem Commun (Camb) 2024; 60:6268-6271. [PMID: 38808396 DOI: 10.1039/d4cc01837k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We present an organophotoredox-catalyzed direct Csp3-H alkylation of 3,4-dihydroquinoxalin-2-ones employing N-(acyloxy)pthalimides to provide corresponding products in good yields. A broad spectrum of NHPI esters (1°, 2°, 3°, and sterically encumbered) participates in the photoinduced alkylation of a variety of 3,4-dihydroquinoxalin-2-ones. In general, mild conditions, broad scope with good functional group tolerance, and scalability are the salient features of this direct alkylation process.
Collapse
Affiliation(s)
- Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Gulshan Singh
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| |
Collapse
|
5
|
Ou-Ichen Z, Boussetta A, Ouchetto K, Hafid A, Khouili M, Ouchetto H. Insights into synthesis, reactivity, and biological activity of N-isoindoline-1, 3-diones heterocycles: a systematic literature review. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2024; 21:1453-1493. [DOI: 10.1007/s13738-024-03012-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/22/2024] [Indexed: 01/03/2025]
|
6
|
Panda SP, Dash R, Hota SK, Murarka S. Photodecarboxylative Radical Cascade Involving N-(Acyloxy)phthalimides for the Synthesis of Pyrazolones. Org Lett 2024; 26:3667-3672. [PMID: 38656123 DOI: 10.1021/acs.orglett.4c01176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
We disclose N'-arylidene-N-acryloyltosylhydrazides as novel skeletons for the synthesis of biologically relevant alkylated pyrazolones through a photoinduced radical cascade with N-(acyloxy)pthalimides as readily available alkyl surrogates. The reaction proceeds through the formation of a photoactivated electron donor-acceptor (EDA) complex between alkyl N-(acyloxy)phthalimide (NHPI) esters and LiI/PPh3 as a commercially available donor system. The reaction exhibits a broad scope and scalability, thereby enabling synthesis of a broad spectrum of functionally orchestrated alkylated pyrazolones under mild and transition-metal-free conditions.
Collapse
Affiliation(s)
- Satya Prakash Panda
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037 Rajasthan, India
| | - Rupashri Dash
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037 Rajasthan, India
| | - Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037 Rajasthan, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037 Rajasthan, India
| |
Collapse
|
7
|
Lai D, Bhattacharjee S, Mandal S, Ghosh S, Sahoo P, Sinha S, Hajra A. Iodine(III)-promoted oxidative carbotrifluoromethylation of maleimides with imidazopyridines and Langlois' reagent. Chem Commun (Camb) 2024; 60:2232-2235. [PMID: 38315091 DOI: 10.1039/d3cc05889a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A metal-free protocol for oxidative carbotrifluoromethylation of maleimides with imidazopyridines and Langlois' reagent has been developed using (diacetoxyiodo)benzene (PIDA) as an oxidant. This three-component strategy enables one-step construction of 3,4-disubstituted maleimides in good yields with high functional group tolerance. Both experimental and theoretical studies support the proposed radical reaction mechanism.
Collapse
Affiliation(s)
- Dipti Lai
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
- ISERC, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Suvam Bhattacharjee
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Saurodeep Mandal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
- ISERC, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Prithidipa Sahoo
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Subrata Sinha
- ISERC, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| |
Collapse
|
8
|
Pal B, Sahoo S, Mal P. Atom Transfer Radical Addition Reactions of Quinoxalin-2(1 H)-ones with CBr 4 and Styrenes Using Mes-Acr-MeClO 4 Photocatalyst. J Org Chem 2024; 89:1784-1796. [PMID: 38214146 DOI: 10.1021/acs.joc.3c02469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The atom transfer radical addition (ATRA) reaction is defined as a method for introducing halogenated compounds into alkenes via a radical mechanism. In this study, we present an ATRA approach for achieving regioselective functionalization of quinoxalin-2(1H)-ones by activating C-Br bonds of CBr4 and subsequent trihaloalkyl-carbofunctionalization of styrenes employing the 9-mesityl-10-methylacridinium perchlorate (Fukuzumi) photocatalyst under 3W blue LED (450-470 nm) irradiation. This three-component radical cascade process demonstrates remarkable efficiency in the synthesis of 1-methyl-3-(3,3,3-tribromo-1-(4-chlorophenyl)propyl)quinoxalin-2(1H)-one derivatives.
Collapse
Affiliation(s)
- Buddhadeb Pal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Sathi Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
9
|
Hota SK, Murarka S. Visible Light-Induced Imide Alkylation of Azauracils with Aryl Diazoesters. Chem Asian J 2023:e202301027. [PMID: 38052726 DOI: 10.1002/asia.202301027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
A visible light-induced green and sustainable N-H functionalization of (aza)uracils with α-diazo esters leading to imide alkylation is described. The reaction does not require any catalyst or additive and proceeds under mild conditions. Moreover, an intriguing three component coupling was observed when (aza)uracils were allowed to react with α-diazo esters in cyclic ethers (e. g. 1,4-dioxane, THF) as a solvent. Both the insertion and three-component coupling features broad scope with good to excellent yields and appreciable functional group tolerance. Notably, the divergent method enables modification of natural products and pharmaceuticals, thereby facilitates access to potentially biologically active compounds.
Collapse
Affiliation(s)
- Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| |
Collapse
|
10
|
Meher P, Panda SP, Mahapatra SK, Thombare KR, Roy L, Murarka S. A General Electron Donor-Acceptor Photoactivation Platform of Diaryliodonium Reagents: Arylation of Heterocycles. Org Lett 2023; 25:8290-8295. [PMID: 37962249 DOI: 10.1021/acs.orglett.3c03365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
We report a photoredox system comprising sodium iodide, triphenyl phosphine, and N,N,N',N'-tetramethylethylenediamine (TMEDA) that can form a self-assembled tetrameric electron donor-acceptor (EDA) complex with diaryliodonium reagents (DAIRs) and furnish aryl radicals upon visible light irradiation. This practical mode of activation of DAIRs enables arylation of an array of heterocycles under mild conditions to provide the respective heteroaryl-(hetero)aryl assembly in moderate to excellent yields. Detailed mechanistic investigations comprising photophysical and DFT studies provided insight into the reaction mechanism.
Collapse
Affiliation(s)
- Prahallad Meher
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Satya Prakash Panda
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Sanat Kumar Mahapatra
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, Bhubaneswar 751013, India
| | - Karan Ramdas Thombare
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, Bhubaneswar 751013, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| |
Collapse
|
11
|
Senapati S, Parida SK, Karandikar SS, Murarka S. Organophotoredox-Catalyzed Arylation and Aryl Sulfonylation of Morita-Baylis-Hillman Acetates with Diaryliodonium Reagents. Org Lett 2023; 25:7900-7905. [PMID: 37882475 DOI: 10.1021/acs.orglett.3c03146] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
We report an organophotoredox-catalyzed stereoselective allylic arylation of MBH acetates with a palette of diaryliodonium triflates (DAIRs) to provide the corresponding trisubstituted alkenes in moderate to good yields. The method could be extended to three-component coupling involving 1,4-diazabicyclo[2.2.2]octane bis(sulfur dioxide) adduct (DABSO) as a sulfur dioxide surrogate for the synthesis of biologically relevant allylic sulfones. Both of these reactions were carried out under mild conditions featuring broad scope, robustness, and appreciable functional group tolerance.
Collapse
Affiliation(s)
- Sudip Senapati
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| | - Sushanta Kumar Parida
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| | - Sayali Sunil Karandikar
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| |
Collapse
|
12
|
Bhanja R, Bera SK, Mal P. Photocatalyst- and Transition Metal-Free Light-Induced Borylation Reactions. Chem Asian J 2023; 18:e202300691. [PMID: 37747303 DOI: 10.1002/asia.202300691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 09/26/2023]
Abstract
The increasing global warming concerns have propelled a surge in the demand for sustainable energy sources within the domain of synthetic organic chemistry. A particularly prominent area of research has been the development of mild synthetic strategies for generating heterocyclic compounds. Heterocyclic compounds containing boron have notably risen to prominence as pivotal reagents in a myriad of organic transformations, showcasing their wide-ranging applicability. This comprehensive review is aimed at collecting the literature pertaining to borylation reactions induced by light, specifically focusing on photocatalyst-free and transition metal-free methodologies. The central emphasis is on delving into selective mechanistic investigations. The amalgamation and analysis of these research insights elucidate the substantial potential inherent in eco-friendly approaches for synthesizing heterocyclic compounds, thus propelling the landscape of sustainable organic chemistry.
Collapse
Affiliation(s)
- Rosalin Bhanja
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India) (PM
| | - Shyamal Kanti Bera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India) (PM
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India) (PM
| |
Collapse
|
13
|
Mandal T, Das S, Maji R, De Sarkar S. Visible-Light-Induced Hydrogen Atom Transfer En Route to Exocylic Alkenylation of Cyclic Ethers Enabled by Electron Donor-Acceptor Complex. Org Lett 2023; 25:7727-7732. [PMID: 37844302 DOI: 10.1021/acs.orglett.3c03099] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
An electron donor-acceptor (EDA)-triggered hydrogen atom transfer (HAT) process is developed for the efficient generation of an α-alkoxy radical from cyclic ethers to synthesize exocyclic alkenylated ethers with exclusive E-selectivity. A judiciously chosen donor-acceptor pair (DABCO and maleimide) serves as the desired HAT reagent under visible light irradiation without using any photocatalyst or peroxide. A wide variety of substrates were explored to demonstrate the diverse applicability and practical viability of this cross-dehydrogenative transformation. Detailed mechanistic studies revealed a radical reaction pathway under the oxidative environment.
Collapse
Affiliation(s)
- Tanumoy Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sanju Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Rohan Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| |
Collapse
|
14
|
Nguyen AT, Kim HK. Visible-light-mediated synthesis of oxime esters via multicomponent reactions of aldehydes, aryl amines, and N-hydroxyphthalimide esters. RSC Adv 2023; 13:31346-31352. [PMID: 37901270 PMCID: PMC10600831 DOI: 10.1039/d3ra06737h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/21/2023] [Indexed: 10/31/2023] Open
Abstract
Oxime esters are useful scaffolds in many organic chemistry transformations. Herein, a novel visible-light-mediated three-component reaction for synthesis of oxime esters is reported. Aldehydes, aniline, and N-hydroxyphthalimide (NHPI) esters were used as substrates in this three-component reaction, and eosin Y was used as a crucial photocatalyst for the reaction. Wide ranges of aldehydes and NHPI esters were well tolerated in this reaction method, generating various oxime esters with high efficiency under mild reaction conditions. This visible-light-mediated methodology will be a promising approach to synthesize useful oxime esters in a single step.
Collapse
Affiliation(s)
- Anh Thu Nguyen
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital Jeonju 54907 Republic of Korea
| |
Collapse
|
15
|
Panda SP, Hota SK, Dash R, Roy L, Murarka S. Photodecarboxylative C-H Alkylation of Azauracils with N-(Acyloxy)phthalimides. Org Lett 2023; 25:3739-3744. [PMID: 37184284 DOI: 10.1021/acs.orglett.3c01210] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We disclose a transition-metal-free NaI/PPh3-mediated direct C-H alkylation of azauracils using N-(acyloxy)pthalimides (NHPIs) as readily available alkyl surrogates under visible light irradiation. Detailed mechanistic studies reveal formation of a photoactivated electron donor-acceptor (EDA) complex between NaI/PPh3, TMEDA, and alkyl NHPI ester and establish the crucial role of TMEDA in increasing the activity of the photoredox system. The reaction demonstrates a broad scope, scalability, and appreciable functional group tolerance. A variety of azauracils are shown to undergo alkylation by primary, secondary, and tertiary NHPI esters under mild conditions, furnishing the desired products in good to excellent yields.
Collapse
Affiliation(s)
- Satya Prakash Panda
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Rupashri Dash
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, Bhubaneswar, Odisha 751013, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| |
Collapse
|
16
|
Meher P, Samanta RK, Manna S, Murarka S. Visible light photoredox-catalyzed arylative cyclization to access benzimidazo[2,1- a]isoquinolin-6(5 H)-ones. Chem Commun (Camb) 2023; 59:6092-6095. [PMID: 37128950 DOI: 10.1039/d3cc00605k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A photoredox-catalyzed arylative radical cascade involving N-acryloyl-2-arylbenzoimidazoles and diaryliodonium triflates leading to the formation of a broad array of pharmaceutically important arylated-benzimidazo[2,1-a]isoquinolin-6(5H)-ones is described. Importantly, the synthesized benzimidazoisoquinolinones are amenable for further synthetic manipulation and allowed efficient access to benzimidazo-fused polycyclic heterocycles.
Collapse
Affiliation(s)
- Prahallad Meher
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Raj Kumar Samanta
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Sourav Manna
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| |
Collapse
|
17
|
Hota SK, Panda SP, Das S, Mahapatra SK, Roy L, De Sarkar S, Murarka S. Photoinduced Electron Donor-Acceptor Complex-Mediated Radical Cascade Involving N-(Acyloxy)phthalimides: Synthesis of Tetrahydroquinolines. J Org Chem 2023; 88:2543-2549. [PMID: 36749678 DOI: 10.1021/acs.joc.2c03044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We conceptualized a novel disconnection approach for the synthesis of fused tetrahydroquinolines that exploits a visible light-mediated radical (4 + 2) annulation between alkyl N-(acyloxy)phthalimides and N-substituted maleimides in the presence of DIPEA as an additive. The reaction proceeds through the formation of a photoactivated electron donor-acceptor complex between alkyl NHPI esters and DIPEA, and the final tetrahydroquinolines were obtained in a complete regioselective fashion. The methodology features a broad scope and good functional group tolerance and operates under metal- and catalyst-free reaction conditions. Detailed mechanistic investigations including density functional theory studies provide insight into the reaction pathway.
Collapse
Affiliation(s)
- Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Satya Prakash Panda
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Sanju Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Sanat Kumar Mahapatra
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, Bhubaneswar, Odisha 751013, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, Bhubaneswar, Odisha 751013, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| |
Collapse
|
18
|
Mandal T, Mallick S, Kumari N, De Sarkar S. Visible-Light-Mediated Synthesis of Phenanthrenes through Successive Photosensitization and Photoredox by a Single Organocatalyst. Org Lett 2022; 24:8452-8457. [DOI: 10.1021/acs.orglett.2c03612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tanumoy Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Samrat Mallick
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Nidhi Kumari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
19
|
Sau S, Mal P. Visible-Light Promoted Regioselective Oxygenation of Quinoxalin-2(1 H)-ones Using O 2 as an Oxidant. J Org Chem 2022; 87:14565-14579. [PMID: 36214497 DOI: 10.1021/acs.joc.2c01960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A visible-light-mediated sustainable approach for metal-free oxygenation of quinoxalin-2(1H)-one by employing Mes-Acr-MeClO4 as a photocatalyst without using any additive or cocatalyst is reported here. O2 served as the eco-friendly and green oxidant source for this conversion. In addition, the protocol exhibited high regioselectivity and tolerance toward a broad spectrum of functional groups to furnish quinoxaline-2,3-diones in good to excellent yields.
Collapse
Affiliation(s)
- Sudip Sau
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhaba National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhaba National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
20
|
Samanta RK, Meher P, Murarka S. Visible Light Photoredox-Catalyzed Direct C-H Arylation of Quinoxalin-2(1 H)-ones with Diaryliodonium Salts. J Org Chem 2022; 87:10947-10957. [PMID: 35925769 DOI: 10.1021/acs.joc.2c01234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A photoredox-catalyzed direct arylation of quinoxalin-2-(1H)-ones using diaryliodonium triflates as the convenient, stable, and cheap aryl source is described. A broad variety of quinoxalin-2-(1H)-ones are shown to react with structurally and electronically diverse diaryliodonium triflates, allowing efficient access to a wide variety of pharmaceutically important 3-arylquinoxalin-2-(1H)-ones. The presented method is attractive with regard to operational simplicity, mild conditions, broad scope, scalability, and high functional group tolerance.
Collapse
Affiliation(s)
- Raj K Samanta
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Prahallad Meher
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| |
Collapse
|
21
|
Utilization of photocatalysts in decarboxylative coupling of carboxylic N-hydroxyphthalimide (NHPI) esters. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Visible-light-promoted radical alkylation/cyclization of allylic amide with N-hydroxyphthalimide ester: Synthesis of oxazolines. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Kumar Parida S, Kumar Hota S, Jaiswal S, Singh P, Murarka S. Multicomponent Synthesis of Biologically Relevant
S
‐Diarylmethane Dithiocarbamates Using
p
‐Quinone Methides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sushanta Kumar Parida
- Department of Chemistry Indian Institute of Technology Jodhpur Karwar-342037 Rajasthan India
| | - Sudhir Kumar Hota
- Department of Chemistry Indian Institute of Technology Jodhpur Karwar-342037 Rajasthan India
| | - Sonal Jaiswal
- Department of Bioscience and Bioengineering Indian Institute of Technology Jodhpur Karwar-342037 Rajasthan India
| | - Priyanka Singh
- Department of Bioscience and Bioengineering Indian Institute of Technology Jodhpur Karwar-342037 Rajasthan India
| | - Sandip Murarka
- Department of Chemistry Indian Institute of Technology Jodhpur Karwar-342037 Rajasthan India
| |
Collapse
|
24
|
Das S, Azim A, Hota SK, Panda SP, Murarka S, De Sarkar S. An organophotoredox-catalyzed redox-neutral cascade involving N-(acyloxy)phthalimides and allenamides: synthesis of indoles. Chem Commun (Camb) 2021; 57:13130-13133. [PMID: 34806725 DOI: 10.1039/d1cc05397c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An organophotoredox-catalyzed radical cascade of allenamides and alkyl N-(acyloxy)phthalimides for the synthesis of indoles is documented. The method features mild and robust reaction conditions, and exhibits broad scope. The tandem process enriches the limited repertoire of alkyl NHPI ester addition on electron-rich π-bonds as well as radical chemistry involving allenamides.
Collapse
Affiliation(s)
- Sanju Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India.
| | - Aznur Azim
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India.
| | - Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Satya Prakash Panda
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India.
| |
Collapse
|
25
|
Das S, Mandal T, De Sarkar S. Acridine Orange Hemi(Zinc Chloride) Salt as a Lewis Acid‐Photoredox Hybrid Catalyst for the Generation of
α
‐Carbonyl Radicals. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sanju Das
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| | - Tanumoy Mandal
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| | - Suman De Sarkar
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| |
Collapse
|
26
|
Mandal T, Azim A, Das S, De Sarkar S. Organophotoredox Catalyzed Stereoselective Nitration of Olefins with
tert
‐Butyl Nitrite under Air. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tanumoy Mandal
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| | - Aznur Azim
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| | - Sanju Das
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| | - Suman De Sarkar
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| |
Collapse
|
27
|
Behnke NE, Sales ZS, Li M, Herrmann AT. Dual Photoredox/Nickel-Promoted Alkylation of Heteroaryl Halides with Redox-Active Esters. J Org Chem 2021; 86:12945-12955. [PMID: 34464532 DOI: 10.1021/acs.joc.1c01625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein a method for the radical alkylation of heteroaryl halides that relies upon the combination of photoredox and nickel catalysis is described. The use of aliphatic N-(acyloxy)phthalimides as redox-active esters affords primary and secondary radicals for the decarboxylative dual cross-coupling with pyrimidine and pyridine heteroaryl chlorides, bromides, and iodides. The method provides an additional synthetic tool for the incorporation of medicinally relevant heterocyclic motifs.
Collapse
Affiliation(s)
- Nicole Erin Behnke
- Department of Chemistry, Rice University, BioScience Research Collaborative, 6500 Main Street, Rm 380, Houston, Texas 77030, United States
| | - Zachary S Sales
- Discovery Process Research, Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Minyan Li
- Discovery Process Research, Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Aaron T Herrmann
- Discovery Process Research, Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| |
Collapse
|
28
|
Moczulski M, Kowalska E, Kuśmierek E, Albrecht Ł, Albrecht A. Visible-light synthesis of 4-substituted-chroman-2-ones and 2-substituted-chroman-4-ones via doubly decarboxylative Giese reaction. RSC Adv 2021; 11:27782-27786. [PMID: 35480728 PMCID: PMC9037851 DOI: 10.1039/d1ra05914a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/27/2022] Open
Abstract
Doubly decarboxylative, photoredox synthesis of 4-substituted-chroman-2-ones and 2-substituted-chroman-4-ones is described. The reaction involves two independent decarboxylation processes: the first one initiating the cycle and the second completing the process. Visible light, photoredox catalyst, base, anhydrous solvent and inert atmosphere constitute the key parameters for the success of the developed transformation. The protocol proved applicable for coumarin-3-carboxylic acids and chromone-3-carboxylic acids as well as N-(acyloxy)phthalimide which served as precursors of the corresponding alkyl radicals. The manuscript describes the doubly decarboxylative Giese reaction between N-(acyloxy)phthalimides and coumarin-3-carboxylic acids or chromone-3-carboxylic acids.![]()
Collapse
Affiliation(s)
- Marek Moczulski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology Żeromskiego 116 90-924 Łódź Poland
| | - Ewelina Kowalska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology Żeromskiego 116 90-924 Łódź Poland
| | - Elżbieta Kuśmierek
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology Żeromskiego 116 90-924 Łódź Poland
| | - Łukasz Albrecht
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology Żeromskiego 116 90-924 Łódź Poland
| | - Anna Albrecht
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology Żeromskiego 116 90-924 Łódź Poland
| |
Collapse
|
29
|
Parida SK, Jaiswal S, Singh P, Murarka S. Multicomponent Synthesis of Biologically Relevant S-Aryl Dithiocarbamates Using Diaryliodonium Salts. Org Lett 2021; 23:6401-6406. [PMID: 34319121 DOI: 10.1021/acs.orglett.1c02220] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A transition-metal-free one-pot three-component annulation between diaryliodonium triflates, cyclic and acyclic aliphatic amines, and carbon disulfide providing a convenient and efficient access to biologically relevant S-aryl dithiocarbamates is developed. The reaction does not require metal, base, or any other additive and operates under mild and ambient conditions. This methodology is robust, scalable, and exhibits a broad substrate scope. The in silico analysis revealed that the majority of the compounds have a drug-likeness and good ADMET characteristics.
Collapse
Affiliation(s)
- Sushanta K Parida
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar 342037, Rajasthan, India
| | - Sonal Jaiswal
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342037, Rajasthan, India
| | - Priyanka Singh
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342037, Rajasthan, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar 342037, Rajasthan, India
| |
Collapse
|
30
|
Sun M, Li L, Wang L, Huo J, Sun M, Li P. Controllable chemoselectivity in the reaction of 2H-indazoles with alcohols under visible-light irradiation: synthesis of C3-alkoxylated 2H-indazoles and ortho-alkoxycarbonylated azobenzenes. Org Chem Front 2021. [DOI: 10.1039/d1qo00592h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A high chemoselectivity in the visible-light-induced reaction of 2H-indazoles with alcohols controlled by the reaction atmosphere was achieved, providing C3-alkoxylated 2H-indazoles and ortho-alkoxycarbonylated azobenzenes.
Collapse
Affiliation(s)
- Mingli Sun
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou
- P. R. China
- Department of Chemistry
| | - Laiqiang Li
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou
- P. R. China
- Department of Chemistry
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou
- P. R. China
- Department of Chemistry
| | - Jie Huo
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou
- P. R. China
| | - Manman Sun
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou
- P. R. China
| | - Pinhua Li
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P. R. China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|