1
|
Subramaniam SV, Singh B, Pradeep N, Peruncheralathan S. PIFA-mediated intramolecular N-arylation of 2-aminoquinoxalines to afford indolo[2,3- b]quinoxaline derivatives. Org Biomol Chem 2024; 22:5803-5808. [PMID: 38946202 DOI: 10.1039/d4ob00812j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
We present the PIFA-mediated intramolecular N-arylation of 2-aminoquinoxalines at room temperature for the first time. This method provides a wide range of indolo[2,3-b]quinoxalines in good to excellent yields within a short time. The C-H bond functionalization occurs without the need for an inert atmosphere or additives. Additionally, a double C-H bond functionalization was observed, where the first reaction forms a C-N bond (N-arylation) and the second forms a C-O bond, yielding an acetal-functionalized product. Mechanistic investigations suggest that the C-H bond functionalization proceeds through an ionic mechanism, whereas acetal functionalization follows a radical pathway. This method extends to the derivation of indoloquinoxalines, including the target compound BIQMCz.
Collapse
Affiliation(s)
- Subhashini V Subramaniam
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda - 752050, India.
| | - Badal Singh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda - 752050, India.
| | - Natarajan Pradeep
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda - 752050, India.
| | - Saravanan Peruncheralathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda - 752050, India.
| |
Collapse
|
2
|
Ji H, Wang Z, Zhan H, Fang Z, Zhang Q, Li D. Copper-catalyzed benzylic C–H amidation of toluene derivatives with N-(8-quinolyl)amides through C(sp3)–H/N–H cross dehydrogenative coupling. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Lan W, Zhu J, Abulaiti B, Chen G, Zhang Z, Yan N, Wan JP, Zhang X, Liao L. Zinc Trifluoromethanesulfonate-Catalyzed para-Selective Amination of Free Anilines and Free Phenols with Quinoneimides. J Org Chem 2022; 87:13895-13906. [DOI: 10.1021/acs.joc.2c01600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weiqiao Lan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jiatong Zhu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Buweihailiqiemu Abulaiti
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Genyuan Chen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Zhihao Zhang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Nan Yan
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Xiaomei Zhang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - Lihua Liao
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, P. R. China
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
4
|
Ji H, Zhan H, Chen S, Fang Z, Zhang Q, Li D. Copper‐catalyzed C(sp
3
)−H/N−H Cross Dehydrogenative Coupling Between Toluene Derivatives and Picolinamides. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Huihui Ji
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering Hubei University of Technology Wuhan 430068 China
| | - Hongju Zhan
- Hubei Provincial Key Laboratory of Drug Synthesis and Optimization Jingchu University of Technology Jingmen 448000 China
| | - Shumin Chen
- Hubei Provincial Key Laboratory of Drug Synthesis and Optimization Jingchu University of Technology Jingmen 448000 China
| | - Zeguo Fang
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering Hubei University of Technology Wuhan 430068 China
| | - Qian Zhang
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering Hubei University of Technology Wuhan 430068 China
| | - Dong Li
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering Hubei University of Technology Wuhan 430068 China
- Hubei Provincial Key Laboratory of Drug Synthesis and Optimization Jingchu University of Technology Jingmen 448000 China
| |
Collapse
|
5
|
Zhang Q, Deng S, Li D, Shimokawa J, Yorimitsu H. AgF‐Mediated Electrophilic Amination of Alkoxyarylsilanes with Azodicarboxylates. Chem Asian J 2022; 17:e202101345. [DOI: 10.1002/asia.202101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/29/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Qian Zhang
- Hubei University of Technology School of Materials and Chemical Engineering CHINA
| | - Shijun Deng
- Hubei University of Technology School of Materials and Chemical Engineering CHINA
| | - Dong Li
- Hubei University of Technology School of Materials and Chemical Engineering CHINA
| | - Jun Shimokawa
- Kyoto University , Graduate School of Science Sakyo-ku 606-8502 Kyoto JAPAN
| | - Hideki Yorimitsu
- Kyoto University: Kyoto Daigaku Department of Chemistry, Graduate School of Science JAPAN
| |
Collapse
|
6
|
Li X, Li G, Cheng Y, Du Y. The aryl iodine-catalyzed organic transformation via hypervalent iodine species generated in situ. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The application of hypervalent iodine species generated in situ in organic transformations has emerged as a useful and powerful tool in organic synthesis, allowing for the construction of a series of bond formats via oxidative coupling. Among these transformations, the catalytic aryl iodide can be oxidized to hypervalent iodine species, which then undergoes oxidative reaction with the substrates and the aryl iodine regenerated again once the first cyclic cycle of the reaction is completed. This review aims to systematically summarize and discuss the main progress in the application of in situ-generated hypervalent iodine species, providing references and highlights for synthetic chemists who might be interested in this field of hypervalent iodine chemistry.
Collapse
Affiliation(s)
- Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency , School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072 , China
| | - Guangchen Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency , School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072 , China
| | - Yifu Cheng
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency , School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072 , China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency , School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072 , China
| |
Collapse
|
7
|
Chen Y, Huang Z, Jiang Y, Shu S, Yang S, Shi DQ, Zhao Y. Direct para-Selective C-H Amination of Iodobenzenes: Highly Efficient Approach for the Synthesis of Diarylamines. J Org Chem 2021; 86:8226-8235. [PMID: 34080879 DOI: 10.1021/acs.joc.1c00681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iodine(III)-mediated synthesis of 4-iodo-N-phenylaniline from iodobenzene has been achieved, and the reaction can proceed under mild conditions. A variety of functional groups were well tolerated, providing the corresponding products in moderate to good yields. The remaining iodine group provides an effective platform for converting the products into several valuable asymmetric diphenylamines. Most importantly, this reaction can be easily scaled up to the ten-gram scale, highlighting its synthetic utility. The mechanistic study revealed that the in situ generated aryl hypervalent iodine intermediate is the key factor to realize this para-selective C-H amination reaction.
Collapse
Affiliation(s)
- Yujie Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhibin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yaqiqi Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Sai Shu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Shan Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Da-Qing Shi
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Henan 453007, China
| |
Collapse
|