1
|
Deng KZ, Sukowski V, Fernández-Ibáñez MÁ. Non-Directed C-H Arylation of Anisole Derivatives via Pd/S,O-Ligand Catalysis. Angew Chem Int Ed Engl 2024; 63:e202400689. [PMID: 38401127 DOI: 10.1002/anie.202400689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Non-directed C-H arylation is one of the most efficient methods to synthesize biaryl compounds without the need of the prefuctionalization of starting materials, or the installment and removal of directing groups on the substrate. A direct C-H arylation of simple arenes as limiting reactants remains a challenge. Here we disclose a non-directed C-H arylation of anisole derivatives as limiting reagents with aryl iodides under mild reaction conditions. The arylated products are obtained in synthetically useful yields and the arylation of bioactive molecules is also demonstrated. Key to the success of this methodology is the use of a one-step synthesized S,O-ligand.
Collapse
Affiliation(s)
- Ke-Zuan Deng
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Verena Sukowski
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - M Ángeles Fernández-Ibáñez
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Fernández-Moyano S, Salamanca V, Albéniz AC. Palladium mono- N-protected amino acid complexes: experimental validation of the ligand cooperation model in C-H activation. Chem Sci 2023; 14:6688-6694. [PMID: 37350841 PMCID: PMC10284104 DOI: 10.1039/d3sc02076b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023] Open
Abstract
Mechanistic proposals for the C-H activation reaction enabled by mono-N-protected amino acid ligands (MPAAs) have been supported by DFT calculations. The direct experimental observation of the ligand-assisted C-H activation has not yet been reported due to the lack of well-defined isolated palladium complexes with MPAAs that can serve as models. In this work, palladium complexes bearing chelating MPAAs (NBu4)[Pd(κ2-N,O-AcN-CHR-COO)(C6F5)py] (Ac = MeC(O); R = H, Me) and [Pd(κ2-N,O-MeNH-CH2-COO)(C6F5)py] have been isolated and characterized. Their evolution in a solution containing toluene leads to the C-H activation of the arene and the formation of the C6F5-C6H4Me coupling products. This process takes place only for the ligands with an acyl protecting group, showing the cooperating role of this group in a complex with a chelating MPAA, therefore experimentally validating this working model. The carboxylate group is inefficient in this C-H activation.
Collapse
Affiliation(s)
| | - Vanesa Salamanca
- IU CINQUIMA/Química Inorgánica, Universidad de Valladolid 47071-Valladolid Spain
| | - Ana C Albéniz
- IU CINQUIMA/Química Inorgánica, Universidad de Valladolid 47071-Valladolid Spain
| |
Collapse
|
3
|
Yun SJ, Kim J, Kang E, Jung H, Kim HT, Kim M, Joo JM. Nondirected Pd-Catalyzed C–H Perdeuteration and meta-Selective Alkenylation of Arenes Enabled by Pyrazolopyridone Ligands. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Seo Jin Yun
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Jisu Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Eunsu Kang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Hoimin Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Hyun Tae Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Minkyu Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Jung Min Joo
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
- Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Rama RJ, Maya C, Molina F, Nova A, Nicasio MC. Important Role of NH-Carbazole in Aryl Amination Reactions Catalyzed by 2-Aminobiphenyl Palladacycles. ACS Catal 2023; 13:3934-3948. [PMID: 36970467 PMCID: PMC10029719 DOI: 10.1021/acscatal.3c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/25/2023] [Indexed: 03/09/2023]
Abstract
2-Aminobiphenyl palladacycles are among the most successful precatalysts for Pd-catalyzed cross-coupling reactions, including aryl amination. However, the role of NH-carbazole, a byproduct of precatalyst activation, remains poorly understood. Herein, the mechanism of the aryl amination reactions catalyzed by a cationic 2-aminobiphenyl palladacycle supported by a terphenyl phosphine ligand, PCyp2ArXyl2 (Cyp = cyclopentyl; ArXyl2 = 2,6-bis(2,6-dimethylphenyl)phenyl), P1, has been thoroughly investigated. Combining computational and experimental studies, we found that the Pd(II) oxidative addition intermediate reacts with NH-carbazole in the presence of the base (NaO t Bu) to yield a stable aryl carbazolyl Pd(II) complex. This species functions as the catalyst resting state, providing the amount of monoligated LPd(0) species required for catalysis and minimizing Pd decomposition. In the case of a reaction with aniline, an equilibrium between the carbazolyl complex and the on-cycle anilido analogue is established, which allows for a fast reaction at room temperature. In contrast, heating is required in a reaction with alkylamines, whose deprotonation involves coordination to the Pd center. A microkinetic model was built combining computational and experimental data to validate the mechanistic proposals. In conclusion, our study shows that despite the rate reduction observed in some reactions by the formation of the aryl carbazolyl Pd(II) complex, this species reduces catalyst decomposition and could be considered an alternative precatalyst in cross-coupling reactions.
Collapse
Affiliation(s)
- Raquel J. Rama
- Departamento de Química Inorgánica, Universidad de Sevilla, Aptdo 1203, 41071 Sevilla, Spain
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences and Centre for Materials Science and Nanotechnology, University of Oslo, N-0315 Oslo, Norway
| | - Celia Maya
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| | - Francisco Molina
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, 21071 Huelva, Spain
| | - Ainara Nova
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences and Centre for Materials Science and Nanotechnology, University of Oslo, N-0315 Oslo, Norway
| | - M. Carmen Nicasio
- Departamento de Química Inorgánica, Universidad de Sevilla, Aptdo 1203, 41071 Sevilla, Spain
| |
Collapse
|
5
|
Pinilla C, Salamanca V, Lledós A, Albéniz AC. Palladium-Catalyzed Ortho C-H Arylation of Unprotected Anilines: Chemo- and Regioselectivity Enabled by the Cooperating Ligand [2,2'-Bipyridin]-6(1 H)-one. ACS Catal 2022; 12:14527-14532. [PMID: 36504914 PMCID: PMC9724229 DOI: 10.1021/acscatal.2c05206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Metal-catalyzed C-H functionalizations on the aryl ring of anilines usually need cumbersome N-protection-deprotection strategies to ensure chemoselectivity. We describe here the Pd-catalyzed direct C-H arylation of unprotected anilines with no competition of the N-arylation product. The ligand [2,2'-bipyridin]-6(1H)-one drives the chemoselectivity by kinetic differentiation in the product-forming step, while playing a cooperating role in the C-H cleavage step. The latter is favored in an anionic intermediate where the NH moiety is deprotonated, driving the regioselectivity of the reaction toward ortho substitution.
Collapse
Affiliation(s)
- Cintya Pinilla
- IU
CINQUIMA/Química Inorgánica, Universidad de Valladolid, 47071 Valladolid, Spain
| | - Vanesa Salamanca
- IU
CINQUIMA/Química Inorgánica, Universidad de Valladolid, 47071 Valladolid, Spain
| | - Agustí Lledós
- Departament
de Química, Universitat Autònoma
de Barcelona, 08193 Barcelona, Spain,Email for A.L.:
| | - Ana C. Albéniz
- IU
CINQUIMA/Química Inorgánica, Universidad de Valladolid, 47071 Valladolid, Spain,Email
for A.C.A.:
| |
Collapse
|
6
|
Sato R, Iida T, Kanbara T, Kuwabara J. Unique regioselectivity of the Pd-catalysed cross-dehydrogenative coupling reaction of simple polyaromatic hydrocarbons with polyfluoroarenes. Chem Commun (Camb) 2022; 58:11511-11514. [PMID: 36125277 DOI: 10.1039/d2cc04655e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Pd-catalysed cross-dehydrogenative coupling reaction introduced two polyfluoroarenes into simple polyaromatic hydrocarbons at sterically favourable positions. An investigation of the reaction mechanism revealed that the unique regioselectivity was determined by the reductive elimination step rather than the C-H bond cleavage step.
Collapse
Affiliation(s)
- Ryota Sato
- Tsukuba Research Center for Energy Materials Science (TREMS) Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| | - Tomoki Iida
- Tsukuba Research Center for Energy Materials Science (TREMS) Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| | - Takaki Kanbara
- Tsukuba Research Center for Energy Materials Science (TREMS) Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| | - Junpei Kuwabara
- Tsukuba Research Center for Energy Materials Science (TREMS) Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| |
Collapse
|
7
|
Sukowski V, van Borselen M, Mathew S, Fernández‐Ibáñez MÁ. S,O-Ligand Promoted meta-C-H Arylation of Anisole Derivatives via Palladium/Norbornene Catalysis. Angew Chem Int Ed Engl 2022; 61:e202201750. [PMID: 35639463 PMCID: PMC9401001 DOI: 10.1002/anie.202201750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 11/07/2022]
Abstract
Reversing the conventional site-selectivity of C-H activation processes provides new retrosynthetic disconnections to otherwise unreactive bonds. Here, we report a new catalytic system based on palladium/norbornene and an S,O-ligand for the meta-C-H arylation of aryl ethers that significantly outperforms previously reported systems. We demonstrate the unique ability of this system to employ alkoxyarene substrates bearing electron donating and withdrawing substituents. Additionally, ortho-substituted aryl ethers are well tolerated, overcoming the "ortho constraint", which is the necessity to have a meta-substituent on the alkoxyarene to achieve high reaction efficiency, by enlisting novel norbornene mediators. Remarkably, for the first time the monoarylation of alkoxyarenes is achieved efficiently enabling the subsequent introduction of a second, different aryl coupling partner to rapidly furnish unsymmetrical terphenyls. Further insight into the reaction mechanism was achieved by isolation and characterization of some Pd-complexes-before and after meta C-H activation-prior to evaluation of their respective catalytic activities.
Collapse
Affiliation(s)
- Verena Sukowski
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Manuela van Borselen
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Simon Mathew
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - M. Ángeles Fernández‐Ibáñez
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
8
|
Sukowski V, van Borselen M, Mathew S, Fernández‐Ibáñez MÁ. S,O‐Ligand Promoted
meta
‐C−H Arylation of Anisole Derivatives via Palladium/Norbornene Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Verena Sukowski
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Manuela van Borselen
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Simon Mathew
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - M. Ángeles Fernández‐Ibáñez
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
9
|
Villalba F, Albéniz AC. Non‐Chelate‐Assisted Palladium‐Catalyzed Aerobic Oxidative Heck Reaction of Fluorobenzenes and Other Arenes: When Does the C−H Activation Need Help? Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Francisco Villalba
- IU CINQUIMA/Química Inorgánica. Universidad de Valladolid. 47071 Valladolid Spain
| | - Ana C. Albéniz
- IU CINQUIMA/Química Inorgánica. Universidad de Valladolid. 47071 Valladolid Spain
| |
Collapse
|
10
|
Urgoitia G, Herrero MT, Churruca F, Conde N, SanMartin R. Direct Arylation in the Presence of Palladium Pincer Complexes. Molecules 2021; 26:4385. [PMID: 34299661 PMCID: PMC8305722 DOI: 10.3390/molecules26144385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/02/2022] Open
Abstract
Direct arylation is an atom-economical alternative to more established procedures such as Stille, Suzuki or Negishi arylation reactions. In comparison with other palladium sources and ligands, the use of palladium pincer complexes as catalysts or pre-catalysts for direct arylation has resulted in improved efficiency, higher reaction yields, and advantageous reaction conditions. In addition to a revision of the literature concerning intra- and intermolecular direct arylation reactions performed in the presence of palladium pincer complexes, the role of these remarkably active catalysts will also be discussed.
Collapse
Affiliation(s)
| | | | | | | | - Raul SanMartin
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (G.U.); (M.T.H.); (F.C.); (N.C.)
| |
Collapse
|