1
|
Chen L, Liu Y, You W, Wang J, He Z, Mei H, Yang X, Yu W, Li G, Huang F. Construction of Slide-Ring Polymers Based on Pillar[5]Arene/Alkyl Chain Host-Guest Interactions. Angew Chem Int Ed Engl 2024:e202417713. [PMID: 39425920 DOI: 10.1002/anie.202417713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Slide-ring polymers exhibit distinctive mechanical properties, making them highly promising for applications in emerging fields such as energy storage devices and smart sensing. However, existing slide-ring polymer systems primarily rely on hydrophilic-hydrophobic interactions to achieve ring-axle interlocking in aqueous phases. This reliance limits the construction of slide-ring networks mainly to water-soluble polymers, excluding a diverse range of lipophilic polymers. Therefore, it is crucial to introduce efficient construction strategies that facilitate interpenetration in organic solvents, enabling the development of diverse slide-ring polymers and expanding their range and applications. Herein, by utilizing the pillar[5]arene/alkyl chain host-guest interactions, we successfully facilitated the interpenetration of a pillar[5]arene and poly(caprolactone), enabling the efficient construction of two slide-ring polymer networks in organic solvents. One of these two slide-ring polymers demonstrates a unique network deformation mechanism along with outstanding mechanical properties compared with the control covalently cross-linked polymer network, including maximum stress (4.43 vs 1.98 MPa), maximum strain (1285 vs 330 %), and toughness (35.4 vs 3.92 MJ/m3). More importantly, this strategy of making slide-ring polymers is highly versatile, given the wide range of macrocyclic arenes and alkyl chain-containing polymers it can accommodate.
Collapse
Affiliation(s)
- Liya Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Yang Liu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Wei You
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiao Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Zejian He
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Honggang Mei
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Xue Yang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guangfeng Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
2
|
Chen L, Sheng X, Li G, Huang F. Mechanically interlocked polymers based on rotaxanes. Chem Soc Rev 2022; 51:7046-7065. [PMID: 35852571 DOI: 10.1039/d2cs00202g] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nature of mechanically interlocked molecules (MIMs) has continued to encourage researchers to design and construct a variety of high-performance materials. Introducing mechanically interlocked structures into polymers has led to novel polymeric materials, called mechanically interlocked polymers (MIPs). Rotaxane-based MIPs are an important class, where the mechanically interlocked characteristic retains a high degree of structural freedom and mobility of their components, such as the rotation and sliding motions of rotaxane units. Therefore, these MIP materials are known to possess a unique set of properties, including mechanical robustness, adaptability and responsiveness, which endow them with potential applications in many emerging fields, such as protective materials, intelligent actuators, and mechanisorption. In this review, we outline the synthetic strategies, structure-property relationships, and application explorations of various polyrotaxanes, including linear polyrotaxanes, polyrotaxane networks, and rotaxane dendrimers.
Collapse
Affiliation(s)
- Liya Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Xinru Sheng
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Guangfeng Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China. .,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China. .,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China. .,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|