1
|
Li H, Wang X, Chang M, Wu M, Yuan X, Hui X, Wei H, Xi J, Xie W. Construction of contiguous quaternary carbon centers enabled by dearomatization of phenols with 3-bromooxindoles. Org Biomol Chem 2024; 22:8413-8417. [PMID: 39352695 DOI: 10.1039/d4ob01163e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
A transition metal-free and oxidation-free dearomatization of phenols through conjugate addition to in situ generated indol-2-one from 3-bromooxindole is detailed in this report. This methodology offers an effective approach for the synthesis of a range of 3-substituted oxindoles containing contiguous quaternary carbon centers (CQCCs) with yields of up to 99%. The reaction is characterized by mild conditions, exceptional efficiency, environmental compatibility, favorable functional group tolerance, and scalability to large-scale production.
Collapse
Affiliation(s)
- Hui Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Xi Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Minhang Chang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Mengbo Wu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Xinyu Yuan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Xiangyu Hui
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Hongbo Wei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Juyun Xi
- Department of General Surgery, Nanping People's Hospital, Nanping, 35300, China.
| | - Weiqing Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, 712100, Shaanxi, China
| |
Collapse
|
2
|
Nishikata T. α-Halocarbonyls as a Valuable Functionalized Tertiary Alkyl Source. ChemistryOpen 2024; 13:e202400108. [PMID: 38989712 DOI: 10.1002/open.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
This review introduces the synthetic organic chemical value of α-bromocarbonyl compounds with tertiary carbons. This α-bromocarbonyl compound with a tertiary carbon has been used primarily only as a radical initiator in atom transfer radical polymerization (ATRP) reactions. However, with the recent development of photo-radical reactions (around 2010), research on the use of α-bromocarbonyl compounds as tertiary alkyl radical precursors became popular (around 2012). As more examples were reported, α-bromocarbonyl compounds were studied not only as radicals but also for their applications in organometallic and ionic reactions. That is, α-bromocarbonyl compounds act as nucleophiles as well as electrophiles. The carbonyl group of α-bromocarbonyl compounds is also attractive because it allows the skeleton to be converted after the reaction, and it is being applied to total synthesis. In our survey until 2022, α-bromocarbonyl compounds can be used to perform a full range of reactions necessary for organic synthesis, including multi-component reactions, cross-coupling, substitution, cyclization, rearrangement, stereospecific reactions, asymmetric reactions. α-Bromocarbonyl compounds have created a new trend in tertiary alkylation, which until then had limited reaction patterns in organic synthesis. This review focuses on how α-bromocarbonyl compounds can be used in synthetic organic chemistry.
Collapse
Affiliation(s)
- Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| |
Collapse
|
3
|
Das S. Visible-Light-Induced Dearomative Annulation of Indoles toward Stereoselective Formation of Fused- and Spiro Indolines. ACS OMEGA 2024; 9:36023-36042. [PMID: 39220487 PMCID: PMC11360027 DOI: 10.1021/acsomega.4c02848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 09/04/2024]
Abstract
Dearomatization approaches are attractive for their abilities to transform simple, planar arenes into complex, three-dimensional architectures. In particular, visible-light driven dearomatization strategies are significant because of their mild, green, and sustainable nature, enabling the fabrication of new chemical bonds via an electron transfer or energy transfer process. Indole compounds, being potentially bioactive and readily accessible, can be employed efficiently as building blocks for constructing diverse annulated frameworks under photocatalysis. Highly stereoselective radical cascade reactions of appropriate indole systems can provide complex cyclic scaffolds bearing multiple stereocenters. In fact, the past few years have witnessed the renaissance of dearomative cycloadditions of indoles via visible-light-induced photocatalysis. The present review highlights recent advances (2019-mid 2024) in visible-light-driven dearomative annulation of indoles leading to formation of polycyclic indolines, including angularly fused and spiro indolines. Most of the reactions described in this review are simple, providing quick access to the desired products. Additionally, characteristic reaction mechanisms are offered to provide an understand of how indole scaffolds show distinctive reactivity under photocatalytic conditions.
Collapse
Affiliation(s)
- Suven Das
- Department of Chemistry, Rishi Bankim Chandra College for Women, Naihati, North 24 Parganas, West Bengal 743165, India
| |
Collapse
|
4
|
Hou Y, Huo J, Li R, Hou J, Lei P, Wei H, Xie W. Catalytic Asymmetric Reverse Prenylation of Indol-2-one Enabled a Synthesis of (-)-Debromoflustramine A. Org Lett 2023; 25:6949-6953. [PMID: 37713279 DOI: 10.1021/acs.orglett.3c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
A catalytic asymmetric nucleophilic reverse prenylation of indol-2-ones in situ generated from 3-bromooxindoles with prenyltributylstannane promoted by Ni(II)/chiral N,N'-dioxide was developed. This reaction provides facile access to C3 reverse-prenylated oxindoles in good to excellent enantioselectivities, which enabled the asymmetric synthesis of debromoflustramine A in five steps.
Collapse
Affiliation(s)
- Yi Hou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100 Shaanxi, China
| | - Jiyou Huo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100 Shaanxi, China
| | - Ruoxin Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100 Shaanxi, China
| | - Jun Hou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100 Shaanxi, China
| | - Pan Lei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100 Shaanxi, China
| | - Hongbo Wei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100 Shaanxi, China
| | - Weiqing Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100 Shaanxi, China
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| |
Collapse
|
5
|
Xu Y, Lei P, Fei Y, Hou Y, Chen G, Zhou Z, Zou H, Wei H, Xie W. Catalytic Asymmetric Construction of C2-Symmetric Contiguous Quaternary Carbon Centers Enabled a Concise Synthesis of (-)-Chimonanthidine and (-)-Folicanthine. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Kumar D, Chaudhary D, Ishu K, Yadav S, Maurya NK, Kant R, Kuram MR. Copper-catalyzed cascade reaction of tryptamines with diazo compounds to access hexahydropyrroloindoline derivatives. Org Biomol Chem 2022; 20:8610-8614. [DOI: 10.1039/d2ob01635d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A Cu-catalyzed cyclopropanation/ring-opening/iminium cyclization of tryptamine derivatives with donor–acceptor diazo compounds is developed to furnish pyrroloindolines, creating three consecutive stereogenic centers.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dhananjay Chaudhary
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Km Ishu
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Suman Yadav
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Naveen Kumar Maurya
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Malleswara Rao Kuram
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|