Wang H, Zheng P, Wu X, Li Y, Xu T. Modular and Facile Access to Chiral α-Aryl Phosphates via Dual Nickel- and Photoredox-Catalyzed Reductive Cross-Coupling.
J Am Chem Soc 2022;
144:3989-3997. [PMID:
35192328 DOI:
10.1021/jacs.1c12424]
[Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chiral phosphine-containing skeletons are important motifs in bioactive natural products, pharmaceuticals, chiral catalysts, and ligands. Herein, we report a general and modular platform to access chiral α-aryl phosphorus compounds via a Ni/photoredox-catalyzed enantioconvergent reductive cross-coupling between α-bromophosphates and aryl iodides. This dual catalytic regime exhibited high efficiency and good functional group compacity. A wide variety of substrates bearing a diverse set of functional groups could be converted into chiral phosphates in good to excellent yields and enantioselectivities. The utility of the method was also demonstrated by the development of a new phosphine ligand and the synthesis of enzyme inhibitor derivatives. The detailed mechanistic studies supported a radical chain process and revealed a unique distinction compared with traditional reductive cross-coupling.
Collapse