1
|
Yuan PF, Huang XT, Long L, Huang T, Sun CL, Yu W, Wu LZ, Chen H, Liu Q. Regioselective Dearomative Amidoximation of Nonactivated Arenes Enabled by Photohomolytic Cleavage of N-nitrosamides. Angew Chem Int Ed Engl 2024; 63:e202317968. [PMID: 38179800 DOI: 10.1002/anie.202317968] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Dearomative spirocyclization reactions represent a promising means to convert arenes into three-dimensional architectures; however, controlling the regioselectivity of radical dearomatization with nonactivated arenes to afford the spirocyclizative 1,2-difunctionalization other than its kinetically preferred 1,4-difunctionalization is exceptionally challenging. Here we disclose a novel strategy for dearomative 1,2- or 1,4-amidoximation of (hetero)arenes enabled by direct visible-light-induced homolysis of N-NO bonds of nitrosamides, giving rise to various highly regioselective amidoximated spirocycles that previously have been inaccessible or required elaborate synthetic efforts. The mechanism and origins of the observed regioselectivities were investigated by control experiments and density functional theory calculations.
Collapse
Affiliation(s)
- Pan-Feng Yuan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xie-Tian Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Linhong Long
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tao Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chun-Lin Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hui Chen
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
2
|
Wan J, Huang J. Electrochemical Dearomative Amination of Phenol Derivatives: Access to Spirooxazolidinones. Adv Synth Catal 2023. [DOI: 10.1002/adsc.202300118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Jin‐Lin Wan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou Guangdong 510640 People's Republic of China
| | - Jing‐Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou Guangdong 510640 People's Republic of China
| |
Collapse
|
3
|
Li L, Hou ZW, Li P, Wang L. Electrochemical Dearomatizing Spirocyclization of Alkynes with Dimethyl 2-Benzylmalonate s to Spiro[4.5]deca-trienones. J Org Chem 2022; 87:8697-8708. [PMID: 35679486 DOI: 10.1021/acs.joc.2c00939] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An electrochemical dearomatizing spirocyclization of alkynes with dimethyl 2-benzylmalonates for the preparation of spiro[4.5]deca-trienones has been developed. This approach adopts ferrocene (Cp2Fe) as an electrocatalyst to produce carbon-centered radical intermediates from C-H-based malonates, which obviates the forthputting of noble-metal reagents, sacrificial chemical oxidants and 2-bromomalonates. A wide variety of spiro compounds are efficiently prepared with satisfactory results under mild conditions.
Collapse
Affiliation(s)
- Laiqiang Li
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Zhong-Wei Hou
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Pinhua Li
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
4
|
Li N, Shi Z, Yuan Y, Li Z, Ye KY. Rapid synthesis of spirodienones via electrochemical dearomative spirocyclization in flow. Org Chem Front 2022. [DOI: 10.1039/d2qo01392d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An electrochemical dearomative spirocyclization in flow has been developed, featuring the use of electrons as the clean oxidant in a minimum amount of electrolytes to afford diverse spirodienones in a short reaction time.
Collapse
Affiliation(s)
- Nan Li
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhaojiang Shi
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yaofeng Yuan
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Ke-Yin Ye
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
5
|
Han LL, Zhang QY, Li X, Qiao Y, Lan Y, Wei D. The chiral pyridoxal-catalyzed biomimetic Mannich reaction: the mechanism and origin of stereoselectivity. Org Chem Front 2022. [DOI: 10.1039/d2qo00705c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A biomimetic organocatalyst with a pyridoxal-like structure is one of the most successful examples of catalyzing organic reactions under mild conditions in an asymmetric synthesis field.
Collapse
Affiliation(s)
- Li-Li Han
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Qiao-Yu Zhang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Xue Li
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China
| | - Yu Lan
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Donghui Wei
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|