1
|
Lee KS, Barbieri F, Casali E, Marris ET, Zanoni G, Schomaker JM. Elucidating the Mechanism of Electrooxidative Allene Dioxygenation: Dual Role of Tetramethylpiperidine N-Oxyl (TEMPO). J Am Chem Soc 2024. [PMID: 39680575 DOI: 10.1021/jacs.4c10431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The cumulated π system of a nonsymmetric allene contains three distinct unsaturated carbons that imbue it with unique reactivity toward radicals as compared to its alkene and alkyne counterparts. Despite the synthetic potential of these versatile building blocks, electrochemical transformations of allenes have been historically underexplored. Myriad strategies for easy access to allenes, coupled with the resurgence of interest in sustainable oxidative transformations of hydrocarbons, prompted our efforts to conduct an in-depth investigation of a rare example of an electrochemical TEMPO-mediated allene dioxygenation. The resultant vinyl-TEMPO motif is readily postfunctionalized to install a heteroatom at each allene carbon. Mechanistic investigations, including cyclic voltammetry (CV) studies, computations, and monitoring by operando NMR (ReactNMR) were performed to lay the groundwork for future electrochemical allene functionalizations that deliver unique synthetic building blocks.
Collapse
Affiliation(s)
- Ken S Lee
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Federico Barbieri
- Department of Chemistry, University of Pavia, Via Torquato Taramelli, 12, 27100 Pavia, PV, Italy
| | - Emanuele Casali
- Department of Chemistry, University of Pavia, Via Torquato Taramelli, 12, 27100 Pavia, PV, Italy
| | - Elijah T Marris
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Via Torquato Taramelli, 12, 27100 Pavia, PV, Italy
| | - Jennifer M Schomaker
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Liu Q, Gele J, Zhao K, Zhang S, Gu W, Zhao Z, Li X. TCCA/RSeSeR-Mediated Selenoalkoxy of Allenamides via a Radical Process: Synthesis of Selanyl-allylic N,O-Aminals. J Org Chem 2024; 89:15529-15541. [PMID: 39422135 DOI: 10.1021/acs.joc.4c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
An efficient TCCA (trichloroisocyanuric acid)/RSeSeR-mediated selenoalkoxy of allenamides for the construction of selanyl-allylic N,OA-aminal derivatives was developed. The reaction exhibits good functional group tolerance and high efficiency, affording the products in good to excellent yields. Mechanistic investigations indicated that a selanyl-allylic radical intermediate was first formed via the RSe radical added to the central carbon of allenamides, which subsequently furnished highly stable selanyl-allylic carbocation intermediate by abstraction of an electron by the chlorine radical. Moreover, this is the first report of using selenium reagent (RSeCl) to activate allenamides via a radical process.
Collapse
Affiliation(s)
- Qingsong Liu
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Jiri Gele
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Kun Zhao
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Shuting Zhang
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Wen Gu
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Zhigang Zhao
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Xiaoxiao Li
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| |
Collapse
|
3
|
Yuan BR, He XK, Cheng Y, Xiao WJ. Photoinduced Hydrosilylation of Fluorinated Alkenes. Org Lett 2024; 26:8610-8614. [PMID: 39353052 DOI: 10.1021/acs.orglett.4c03289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
A visible-light-induced synthesis protocol for silylmonofluoroalkanes is described. The silylation of alkenyl fluorides using (trimethylsilyl)silanes as organosilicon reagents proceeds well under mild conditions via a sequential photoinduced single-electron transfer and protonation process. The protocol shows a broad substrate scope, transition-metal-free conditions, and high functional group tolerance. A wide variety of silylmonofluoroalkanes were obtained in generally good yields (up to 82%).
Collapse
Affiliation(s)
- Bao-Ru Yuan
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiang-Kui He
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ying Cheng
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- Wuhan Institute of Photochemistry and Technology, Wuhan 430083, China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- Wuhan Institute of Photochemistry and Technology, Wuhan 430083, China
| |
Collapse
|
4
|
Guo JD, Korsaye FA, Schutz D, Ciofini I, Miesch L. Photocatalyst-free, visible-light-induced regio- and stereoselective synthesis of phosphorylated enamines from N-allenamides via [1,3]-sulfonyl shift at room temperature. Chem Sci 2024:d4sc05190d. [PMID: 39397817 PMCID: PMC11467721 DOI: 10.1039/d4sc05190d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
Herein, we report the first visible-light-induced strategy for the rapid synthesis of densely functionalized α- and γ-phosphorylated β-sulfonyl enamines in a regio- and stereoselective manner from N-sulfonyl allenamides and H-phosphine oxides. The transformation displays a broad substrate scope, while operating at room temperature under photocatalyst- and additive-free conditions. In this atom-economical process, either terminal or substituted N-sulfonyl allenamides trigger an unprecedented N-to-C [1,3]-sulfonyl shift, relying on a dual radical allyl resonance and α-heteroatom effect in its triplet excited state. A plausible reaction mechanism is proposed which was supported by the outcomes of theoretical approaches based on Density Functional Theory (DFT) calculations.
Collapse
Affiliation(s)
- Jia-Dong Guo
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS UMR 7177, 4 rue Blaise Pascal, CS 90032 67081 Strasbourg France
| | - Feven-Alemu Korsaye
- Chemical Theory and Modelling Group, Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences F-75005 Paris France
| | - Dorian Schutz
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS UMR 7177, 4 rue Blaise Pascal, CS 90032 67081 Strasbourg France
| | - Ilaria Ciofini
- Chemical Theory and Modelling Group, Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences F-75005 Paris France
| | - Laurence Miesch
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS UMR 7177, 4 rue Blaise Pascal, CS 90032 67081 Strasbourg France
| |
Collapse
|
5
|
Joseph E, Tunge JA. Cobalt-Catalyzed Allylic Alkylation at sp 3-Carbon Centers. Chemistry 2024; 30:e202401707. [PMID: 38869446 DOI: 10.1002/chem.202401707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
The rising demand and financial costs of noble transition metal catalysts have emphasized the need for sustainable catalytic approaches. Over the past few years, base-metal catalysts have emerged as ideal candidates to replace their noble-metal counterparts because of their abundance and easiness of handling. Despite the significant advancements achieved with precious transition metals, earth-abundant cobalt catalysts have emerged as efficient alternatives for allylic substitution reactions. In this review, allylic alkylations at sp3-carbon centers mediated by cobalt will be discussed, with a special focus on the mechanistic features, scope, and limitations.
Collapse
Affiliation(s)
- Ebbin Joseph
- Department of Chemistry, The University of Kansas, 1567 Irving Rd., Lawrence, KS 66045, USA
| | - Jon A Tunge
- Department of Chemistry, The University of Kansas, 1567 Irving Rd., Lawrence, KS 66045, USA
| |
Collapse
|
6
|
Li X, Liu Q, Song W. Chemical fixation of CO 2/CS 2 to access iodoallenyl oxazolidinones and allenyl thiazolidine-thiones. Chem Commun (Camb) 2024. [PMID: 39073322 DOI: 10.1039/d4cc02894e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Constructing heterocyclic compounds by chemical fixation of CO2/CS2 as a C1 building block is a promising approach. An efficient and environmentally friendly synthetic approach has been developed using CO2/CS2 to prepare complicated allenyl heterocycles with high yields and diastereoselectivities in a metal-free manner under mild conditions. NIS promoted CO2 fixation and the cyclization reaction by exclusive 1,4-syn-addition of 1,3-enynes rather than 1,2-addition or 3,4-addition, while CS2 participated in unique 1,4-syn-hydrothiolation of 1,3-enynes to afford allenyl heterocycles with different reaction patterns.
Collapse
Affiliation(s)
- Xuejian Li
- Cancer Hospital of Dalian University of Technology, School of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Qinglong Liu
- Cancer Hospital of Dalian University of Technology, School of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Wangze Song
- Cancer Hospital of Dalian University of Technology, School of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| |
Collapse
|
7
|
Zhou Y, Yang WH, Dai NN, Feng JY, Yang MQ, Gao W, Li Q, Deng C, Lu Z, Wei WT. Dual Nickel/Photoredox-Catalyzed Arylsulfonylation of Allenes. Org Lett 2024; 26:5074-5081. [PMID: 38857312 DOI: 10.1021/acs.orglett.4c01258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The nickel/photoredox dual catalysis system is an efficient conversion platform for the difunctionalization of unsaturated hydrocarbons. Herein, we disclose the first dual nickel/photoredox-catalyzed intramolecular 1,2-arylsulfonylation of allenes, which can accurately construct a C(sp2)-C(sp2) bond and a C(sp3)-S bond. The reaction exhibits excellent chemoselectivity and regioselectivity, allowing modular conformations of a diverse series of 3-sulfonylmethylbenzofuran derivatives. Control experiments showed that the bipyridine ligand is crucial for the formation of a stable σ-alkyl nickel intermediate, providing the possibility for sulfonyl radical insertion. Meanwhile, the electrophilic sulfonyl radical facilitates further oxidative addition of the σ-alkyl nickel intermediate and inhibits addition with allenes. In addition, control experiments, cyclic voltammetry tests, Stern-Volmer experiments, and density functional theory calculations afford evidence for the Ni(0)/Ni(I)/Ni(II)/Ni(III) pathway in this 1,2-arylsulfonylation.
Collapse
Affiliation(s)
- Yu Zhou
- School of Materials Science and Chemical Engineering, Ningbo University, Zhejiang 315211, China
| | - Wen-Hui Yang
- School of Materials Science and Chemical Engineering, Ningbo University, Zhejiang 315211, China
| | - Nan-Nan Dai
- School of Materials Science and Chemical Engineering, Ningbo University, Zhejiang 315211, China
| | - Jia-Yao Feng
- School of Materials Science and Chemical Engineering, Ningbo University, Zhejiang 315211, China
| | - Ming-Qi Yang
- School of Materials Science and Chemical Engineering, Ningbo University, Zhejiang 315211, China
| | - Wenqing Gao
- School of Materials Science and Chemical Engineering, Ningbo University, Zhejiang 315211, China
| | - Qiang Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chao Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Zhejiang 315211, China
| |
Collapse
|
8
|
Li Y, Zhang Y, Wang J, Xia D, Zhuo M, Zhu L, Li D, Ni SF, Zhu Y, Zhang WD. Visible-Light-Mediated Three-Component Strategy for the Synthesis of Isoxazolines and Isoxazoles. Org Lett 2024; 26:3130-3134. [PMID: 38587308 DOI: 10.1021/acs.orglett.4c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Isoxazolines and isoxazoles commonly serve as core structures of many therapeutic agents and natural products. However, the metal-free and catalysis-free strategy for the synthesis of these privileged motifs at room temperature remains a challenging task. Herein, we report a three-component strategy to afford diverse isoxazolines and isoxazoles via [3 + 2] cycloadditions of in situ-formed nitronates and olefins/alkynes under visible-light irradiation.
Collapse
Affiliation(s)
- Yanchuan Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yu Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
| | - Jinxin Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Dingding Xia
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Miaomiao Zhuo
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
| | - Lu Zhu
- Department of Ophthalmology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Dong Li
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Yanping Zhu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, China
| | - Wei-Dong Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
9
|
Lin J, Jia M, Song X, Yu H, Ma S. Pd-Catalyzed Enantioselective Creation of All-Carbon Quaternary Center with 2,3-Allenylic Carbonates. Org Lett 2024. [PMID: 38489519 DOI: 10.1021/acs.orglett.2c02497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Enantioselective construction of all-carbon quaternary centers has been achieved via the palladium-catalyzed highly enantioselective allenylation of oxindoles with 2,3-allenylic carbonates to afford a variety of optically active allene products, which contain oxindole units with different functional groups, in high ee. The corresponding synthetic applications have also been demonstrated.
Collapse
Affiliation(s)
- Jie Lin
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Minqiang Jia
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Xu Song
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Hao Yu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
10
|
Guo H, Ruan X, Xu Z, Wang K, Li X, Jiang J. Visible-Light-Mediated Dual Functionalization of Allenes: Regio- and Stereoselective Synthesis of Vinylsulfone Azides. J Org Chem 2024; 89:665-675. [PMID: 38117975 DOI: 10.1021/acs.joc.3c02515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
A gentle and effective method for the photocatalytic dual functionalization of allenes with high regio- and stereoselectivity using a nonmetallic catalyst is described. Inexpensive and easily available sulfinates and TMSN3 were employed as sulfone and azido sources, respectively. The method is characterized by satisfactory substrate compatibility and tolerance toward functional groups. The straightforward initial mechanistic experiments suggested that the reaction could follow a radical pathway. The synthesis of vinylsulfone azide derivatives presented here offers a promising scaffold for the future development of vinyl sulfone-based drugs and functional bioorthogonal reagents.
Collapse
Affiliation(s)
- Houqi Guo
- College of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, People's Republic of China
| | - Xin Ruan
- College of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, People's Republic of China
| | - Zekun Xu
- College of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, People's Republic of China
| | - Kai Wang
- College of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, People's Republic of China
- Hubei Jiangxia Laboratory, Wuhan 430299, Hubei, People's Republic of China
| | - Xiang Li
- College of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, People's Republic of China
| | - Jun Jiang
- College of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, People's Republic of China
- Hubei Jiangxia Laboratory, Wuhan 430299, Hubei, People's Republic of China
| |
Collapse
|
11
|
Zeng JH, Du DT, Liu BE, Zhang ZQ, Zhan ZP. Photoredox-Catalyzed Phosphonocarboxylation of Allenes with Phosphine Oxides and CO 2. J Org Chem 2023; 88:14789-14796. [PMID: 37816195 DOI: 10.1021/acs.joc.3c01583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Phosphonocarboxylation of allenes with diarylphosphine oxides and CO2 via visible-light photoredox catalysis was developed for the first time. This work provided practical and sustainable access to highly valuable but otherwise difficult-to-access linear allylic β-phosphonyl carboxylic acids in moderate yields with exclusive regio- and stereoselectivity. This method was also characterized by step and atom economy and transition-metal free and mild conditions. Preliminary mechanistic studies suggested that allyl-methyl carbanion species are the key intermediates.
Collapse
Affiliation(s)
- Jia-Hao Zeng
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361001, Fujian, People's Republic of China
| | - Deng-Tao Du
- Gulei Innovation Institute, Xiamen University, Zhangzhou 363100, Fujian, People's Republic of China
| | - Bao-En Liu
- Gulei Innovation Institute, Xiamen University, Zhangzhou 363100, Fujian, People's Republic of China
| | - Zhen-Qiang Zhang
- Yunnan Precious Metals Laboratory Company, Ltd., Kunming 650106, Yunnan, People's Republic of China
| | - Zhuang-Ping Zhan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361001, Fujian, People's Republic of China
- Gulei Innovation Institute, Xiamen University, Zhangzhou 363100, Fujian, People's Republic of China
| |
Collapse
|
12
|
Tang N, Zachmann RJ, Xie H, Zheng J, Breit B. Visible-light induced metal-free intramolecular reductive cyclisations of ketones with alkynes and allenes. Chem Commun (Camb) 2023; 59:2122-2125. [PMID: 36723349 DOI: 10.1039/d2cc06972e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A visible-light-induced, intramolecular, reductive cyclisation of ketones with an unsaturated hydrocarbon moiety was developed. In contrast to conventional protocols requiring resource precious or hazardous metal sources, this method enables facile access to ketyl radicals under metal-free and mild reaction conditions. By polarity-reversed, ketyl radical hydroalkoxylation of alkynes and allenes, a variety of five-membered (hetero-)cyclic products were generated in good yields with good to excellent stereoselectivities. The embedded homoallylic tertiary alcohol could be transformed into other useful functionalities, highlighting the synthetic utility of this reaction. This efficient and sustainable ketyl-alkyne/allene cross coupling also features broad functional group tolerance and scalability.
Collapse
Affiliation(s)
- Nana Tang
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, Freiburg im Breisgau 79104, Germany.
| | - Raphael J Zachmann
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, Freiburg im Breisgau 79104, Germany.
| | - Hui Xie
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, Freiburg im Breisgau 79104, Germany.
| | - Jun Zheng
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, Freiburg im Breisgau 79104, Germany.
| |
Collapse
|
13
|
Qian ZM, Guan Z, He YH. Visible Light-Induced Cross-Dehydrocoupling of 3-Cyanocoumarins with Unactivated Aliphatic Aldehydes Enables Access to 4-Acylated Coumarins. J Org Chem 2023; 88:6465-6475. [PMID: 36693384 DOI: 10.1021/acs.joc.2c02928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report visible light-induced cross-dehydrocoupling of 3-cyanocoumarins with unactivated aliphatic aldehydes for the direct synthesis of 4-acylated coumarins. Inexpensive and readily available (n-Bu)4NBr was used as a precursor of the hydrogen atom transfer (HAT) catalyst and [Ir(ppy)2(dtbbpy)PF6] as a photocatalyst. A variety of aldehydes including linear, branched, cyclic, and α,β-unsaturated aliphatic aldehydes were suitable for this reaction yielding the desired acylated coumarin derivatives in 41-98% yields. This method provides a mild, atom-economical, and environmentally friendly synthetic route for the direct acylation of 3-cyanocoumarins. This is the first example so far of C-4 aliphatic acylation of coumarins.
Collapse
Affiliation(s)
- Zhu-Ming Qian
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
Amer MM, Hommelsheim R, Schumacher C, Kong D, Bolm C. Electro-mechanochemical approach towards the chloro sulfoximidations of allenes under solvent-free conditions in a ball mill. Faraday Discuss 2023; 241:79-90. [PMID: 36128995 DOI: 10.1039/d2fd00075j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An electro-mechanochemical protocol for the synthesis of vinylic sulfoximines has been developed. Utilising mechanochemically strained BaTiO3 nanoparticles, the catalytic active system is generated in situ by the reduction of copper(II) chloride. Various combinations of electron-donating and -withdrawing groups are tolerated, and the approach leads to products with difunctionalised double bonds in good to excellent yields. Attempts to add a sulfoximidoyl chloride to an alkyne proved difficult. Additions of a sulfonyl iodide to allenes and alkynes proceeded smoothly in the presence of silica gel without the need for activation by a piezoelectric material.
Collapse
Affiliation(s)
- Mostafa M Amer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany. .,Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - Renè Hommelsheim
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany.
| | - Christian Schumacher
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany.
| | - Deshen Kong
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany.
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany.
| |
Collapse
|
15
|
Tan X, Zhao K, Zhong X, Yang L, Dong Y, Wang T, Yu S, Li X, Zhao Z. Synthesis of 1,2-diselenides via potassium persulfate-mediated diselenation of allenamides with diselenides. Org Biomol Chem 2022; 20:6566-6570. [PMID: 35903979 DOI: 10.1039/d2ob00964a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient potassium persulfate-mediated radical addition of allenamides with diselenides was developed to create a workable route to 1,2-diselenide products. The reaction tolerates a wide spectrum of functional groups to deliver the products in good to excellent yields. Mechanistic investigations including a calculation study indicated that the radical cascade proceeds through a vinyl radical intermediate, which is formed via a selenium radical added to the terminal CC double bond of allenamides.
Collapse
Affiliation(s)
- Xiaoju Tan
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Kun Zhao
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Xuefang Zhong
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Lan Yang
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Yiming Dong
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Tianmi Wang
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Shengping Yu
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Xiaoxiao Li
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Zhigang Zhao
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| |
Collapse
|
16
|
Singh J, Patel RI, Sharma A. Visible‐Light‐Mediated C‐2 Functionalization and Deoxygenative Strategies in Heterocyclic
N
‐Oxides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jitender Singh
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Roshan I. Patel
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Anuj Sharma
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| |
Collapse
|
17
|
Patel RI, Singh J, Sharma A. Visible Light‐Mediated Manipulation of 1,n‐Enynes in Organic Synthesis. ChemCatChem 2022. [DOI: 10.1002/cctc.202200260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Roshan I. Patel
- IIT Roorkee: Indian Institute of Technology Roorkee CHEMISTRY INDIA
| | - Jitender Singh
- IIT Roorkee: Indian Institute of Technology Roorkee CHEMISTRY INDIA
| | - Anuj Sharma
- Indian Institute of Technoology Roorkee Deptartment of Chemistry Room 303DDepartment of Chemistry, IIT Roorkee 247667 Roorkee INDIA
| |
Collapse
|
18
|
SINGH JITENDER, Sharma A. Green and Sustainable Visible Light-Mediated Formation of Amide Bonds: An Emerging Niche in Organic Chemistry. NEW J CHEM 2022. [DOI: 10.1039/d2nj02406c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amide bond is one of the most fascinating functional groups in nature due to its stability, conformational diversity, high bond polarity, and abundance in numerous natural products and drug candidates,...
Collapse
|
19
|
Li Y, Zhang X, Lian Z. Copper catalyzed cyano-sulfonylation of allenes via the insertion of sulfur dioxide toward the synthesis of ( E)-α-cyanomethyl vinylsulfones. Org Chem Front 2022. [DOI: 10.1039/d2qo01063a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and practical method for highly regio- and stereo-selective cyanosulfonylation of allenes by inserting sulfur dioxide to synthesize useful (E)-α-cyanomethyl vinylsulfones has been explored.
Collapse
Affiliation(s)
- Yue Li
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Xuemei Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
20
|
Renzi P, Azzi E, Bessone E, Ghigo G, Parisotto S, Pellegrino F, Deagostino A. Blue light enhanced Heck arylation at room temperature applied to allenes. Org Chem Front 2022. [DOI: 10.1039/d1qo01631h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A blue light enhanced synthesis of 2-vinyl pirrolidines and piperidines through a domino Heck arylation–cyclisation applied to allenyl amines is described. Essential is the role of the light in the aryl migration in the carbo-palladation step.
Collapse
Affiliation(s)
- Polyssena Renzi
- Department of Chemistry, University of Torino, Via Pietro Giuria, 7, 10125 Torino, Italy
| | - Emanuele Azzi
- Department of Chemistry, University of Torino, Via Pietro Giuria, 7, 10125 Torino, Italy
| | - Enrico Bessone
- Department of Chemistry, University of Torino, Via Pietro Giuria, 7, 10125 Torino, Italy
| | - Giovanni Ghigo
- Department of Chemistry, University of Torino, Via Pietro Giuria, 7, 10125 Torino, Italy
| | - Stefano Parisotto
- Department of Chemistry, University of Torino, Via Pietro Giuria, 7, 10125 Torino, Italy
| | - Francesco Pellegrino
- Department of Chemistry, University of Torino, Via Pietro Giuria, 7, 10125 Torino, Italy
| | - Annamaria Deagostino
- Department of Chemistry, University of Torino, Via Pietro Giuria, 7, 10125 Torino, Italy
| |
Collapse
|
21
|
Sun Z, Huang H, Wang Q, Huang C, Mao G, Deng GJ. Visible light-mediated radical-cascade addition/cyclization of arylacrylamides with aldehydes to form quaternary oxindoles at room temperature. Org Chem Front 2022. [DOI: 10.1039/d2qo00319h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The visible light-induced oxidative radical cascade coupling of N-arylacrylamides with aldehydes using bromide as the hydrogen atom transfer agent to synthesize functional oxindoles is described.
Collapse
Affiliation(s)
- Zhaozhao Sun
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Qiaolin Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Chunyan Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| |
Collapse
|