1
|
Fang X. Copper-catalyzed nitration of electron-deficient BN-naphthalene. Chem Commun (Camb) 2023; 59:12581-12584. [PMID: 37789819 DOI: 10.1039/d3cc04359b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Under Cu-catalysis, a regioselective nitration of 1,8-dihalogenated BN-naphthalene (ABN) compounds (4a-4c) has been established with the use of tert-butyl nitrite as the nitrating reagent. The syntheses of dihalo-ABN nitro products (6a-6c; halo = Cl, Br and I) were case-studied in conjunction with the first synthesis and characterization of diiodo-ABN compound 4c. The molecular structures of these compounds have been spectroscopically characterized and further confirmed by X-ray single crystal diffraction experiments. This method allows direct regioselective nitration of electron-deficient ABN systems, providing a step-economical entry to novel nitro-ABN structural motifs with potential applications in agrochemicals, materials sciences, and the medicinal and pharmaceutical industries.
Collapse
Affiliation(s)
- Xiangdong Fang
- College of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Yangpu District, Shanghai 200092, People's Republic of China.
| |
Collapse
|
2
|
Zhang H, Su RC, Qin YL, Wang XJ, Chen D, Liu XR, Jiang YX, Zhao P. Regioselective synthesis of 3-nitroindoles under non-acidic and non-metallic conditions. RSC Adv 2023; 13:26581-26586. [PMID: 37674482 PMCID: PMC10478488 DOI: 10.1039/d3ra03193d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/26/2023] [Indexed: 09/08/2023] Open
Abstract
An electrophilic substitution reaction, without acid and metal, of indole with ammonium tetramethylnitrate for accessing 3-nitroindole has been developed. In this protocol, trifluoroacetyl nitrate (CF3COONO2) was produced by metathesis of ammonium tetramethyl nitrate and trifluoroacetic anhydride at sub-room temperature. Trifluoroacetyl nitrate (CF3COONO2) is an electrophilic nitrating agent for a variety of indoles, aromatic and heterocyclic aromaticity. Meanwhile, this strategy could be applied to construct the skeleton structure of many kinds of bioactive molecules. Interestingly, 3-nitroindole can be further derivatived as a pyrrolo[2,3-b]indole.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Pharmacology, North Sichuan Medical College Nanchong 637100 China
- Institute of Materia Medica of North Sichuan Medical College China
| | - Rong-Chuan Su
- Department of Pharmacology, North Sichuan Medical College Nanchong 637100 China
- Institute of Materia Medica of North Sichuan Medical College China
| | - Yu-Li Qin
- Department of Pharmacology, North Sichuan Medical College Nanchong 637100 China
- Institute of Materia Medica of North Sichuan Medical College China
| | - Xiao-Juan Wang
- Department of Innovation & Entrepreneurship of NSMC China
| | - Dan Chen
- Department of Pharmacology, North Sichuan Medical College Nanchong 637100 China
- Institute of Materia Medica of North Sichuan Medical College China
| | - Xiao-Rong Liu
- Department of Pharmacology, North Sichuan Medical College Nanchong 637100 China
- Institute of Materia Medica of North Sichuan Medical College China
| | - Yu-Xin Jiang
- Department of Pharmacology, North Sichuan Medical College Nanchong 637100 China
- Institute of Materia Medica of North Sichuan Medical College China
| | - Peng Zhao
- Department of Pharmacology, North Sichuan Medical College Nanchong 637100 China
- Institute of Materia Medica of North Sichuan Medical College China
| |
Collapse
|
3
|
Rinehart NI, Saunthwal RK, Wellauer J, Zahrt AF, Schlemper L, Shved AS, Bigler R, Fantasia S, Denmark SE. A machine-learning tool to predict substrate-adaptive conditions for Pd-catalyzed C-N couplings. Science 2023; 381:965-972. [PMID: 37651532 DOI: 10.1126/science.adg2114] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 08/01/2023] [Indexed: 09/02/2023]
Abstract
Machine-learning methods have great potential to accelerate the identification of reaction conditions for chemical transformations. A tool that gives substrate-adaptive conditions for palladium (Pd)-catalyzed carbon-nitrogen (C-N) couplings is presented. The design and construction of this tool required the generation of an experimental dataset that explores a diverse network of reactant pairings across a set of reaction conditions. A large scope of C-N couplings was actively learned by neural network models by using a systematic process to design experiments. The models showed good performance in experimental validation: Ten products were isolated in more than 85% yield from a range of couplings with out-of-sample reactants designed to challenge the models. Importantly, the developed workflow continually improves the prediction capability of the tool as the corpus of data grows.
Collapse
Affiliation(s)
- N Ian Rinehart
- Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rakesh K Saunthwal
- Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joël Wellauer
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry and Catalysis, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Andrew F Zahrt
- Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lukas Schlemper
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry and Catalysis, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Alexander S Shved
- Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Raphael Bigler
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry and Catalysis, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Serena Fantasia
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry and Catalysis, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Scott E Denmark
- Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Chen XH, Ma DD, Gao X, Li YM, Jiang DB, Ma C, Cui HL. Nitration of Pyrrolo[2,1- a]isoquinolines. J Org Chem 2023; 88:4649-4661. [PMID: 36947692 DOI: 10.1021/acs.joc.3c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
We have successfully modified a series of pyrrolo[2,1-a]isoquinolines via direct nitration under mild reaction conditions. Easily accessible nitrates including CAN, Cu(NO3)2·H2O, and Fe(NO3)3·9H2O all can serve as effective nitrating reagents for functionalizing pyrrolo[2,1-a]isoquinolines. Various nitro-bearing pyrrolo[2,1-a]isoquinolines have been efficiently prepared in acceptable to good yields.
Collapse
Affiliation(s)
- Xiao-Hui Chen
- Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P. R. China
| | - Dan-Dan Ma
- Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P. R. China
- College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
| | - Xin Gao
- Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P. R. China
| | - Yun-Meng Li
- Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P. R. China
| | - Da-Bo Jiang
- Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P. R. China
| | - Chao Ma
- College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
| | - Hai-Lei Cui
- Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P. R. China
| |
Collapse
|
5
|
Zheng J, Shoberu A, Zhou PJ, Sun WB, Ying L, Zou JP. NaNO2/K2S2O8-mediated selective transformation of 3-formylchromones to 2-hydroxyiminobenzofuran-3-ones and 2-alkoxy-3-(hydroxyimino)chromanones. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Hao W, Li K, Ye C, Yu W, Chang J. Iodine-Mediated C═C Double Bond Cleavage toward Pyrido[2,1- b]quinazolinones. Org Lett 2022; 24:3286-3290. [PMID: 35446041 DOI: 10.1021/acs.orglett.2c01183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A transition-metal-free C═C double bond cleavage reaction employing molecular iodine is described. In the presence of K2CO3 as the base, I2-mediated C═C bond cleavage followed by intramolecular annulation of N-(2-vinylaryl)pyridin-2-amine substrates produces pyrido[2,1-b]quinazolinones and related heterocyclic compounds. This reaction can be completed on a gram scale and has been successfully applied to the synthesis of compounds with important biological properties, including efflux pump inhibitory and antiallergic activities.
Collapse
Affiliation(s)
- Wei Hao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Kailu Li
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Chenyang Ye
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wenquan Yu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Junbiao Chang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|