1
|
Olyaei A, Sadeghpour M. Recent advances in the synthesis of highly substituted imidazolidines. RSC Adv 2024; 14:30758-30806. [PMID: 39328874 PMCID: PMC11426194 DOI: 10.1039/d4ra06010e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Imidazolidine is a saturated heterocycle with a cyclic aminal core that can be found in natural products and biologically active molecules. Additionally, these heterocyclic compounds have been utilized as chiral ligands, N-heterocyclic carbene precursors, and catalysts in organic synthesis. This review is an attempt to compile the literature of various synthetic procedures of highly substituted imidazolidines, chiral imidazolidines with high diastereoselectivities and enantioselectivities, bis-imidazolidines, and spiro-imidazolidines, as well as their pharmacological properties during the period from 1949 to 2023.
Collapse
Affiliation(s)
- Abolfazl Olyaei
- Department of Chemistry, Faculty of Science, Imam Khomeini International University Qazvin Iran
| | - Mahdieh Sadeghpour
- Department of Chemistry, Qazvin Branch, Islamic Azad University Qazvin Iran
| |
Collapse
|
2
|
Wang WK, Bao FY, Shang ZW, Zheng J, Zhao SY. Three-Component Assembly of Dihydropyrrolo[3,4- e][1,3]thiazines from Elemental Sulfur, Maleimides, and 1,3,5-Triazinanes. Org Lett 2024; 26:4297-4301. [PMID: 38739778 DOI: 10.1021/acs.orglett.4c01164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A three-component reaction for the synthesis of dihydropyrrolo[3,4-e][1,3]thiazines has been developed. Elemental sulfur, maleimides, and 1,3,5-triazinanes are assembled together through sulfuration/nucleophilic attack in N-methylpyrrolidin-2-one (NMP) under mild conditions. A small amount of NaHCO3 is important for the activation of the reaction. In this method, sulfur plays a dual role in thiazine ring formation, while triazinanes are utilized as three-atom synthons in the annulation reaction.
Collapse
Affiliation(s)
- Wen-Kang Wang
- College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Fei-Yun Bao
- College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Zhi-Wei Shang
- College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Jian Zheng
- College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Sheng-Yin Zhao
- College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| |
Collapse
|
3
|
Yang D, Zhu M, Wang T, He Y, Xie L, Zhang J, Cheng B. Catalyst-free inverse-electron-demand aza-Diels-Alder reaction of 4,4-dicyano-2-methylenebut-3-enoates and 1,3,5-triazinanes: access to polysubstituted tetrahydropyridines. Org Biomol Chem 2023. [PMID: 37334910 DOI: 10.1039/d3ob00511a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
An inverse-electron-demand aza-Diels-Alder reaction between 4,4-dicyano-2-methylenebut-3-enoates and 1,3,5-triazinanes under catalyst-free and additive-free conditions was developed, which provided a highly convenient and straightforward method to construct a series of polyfunctionalized tetrahydropyridines in high yields. This strategy features numerous advantages, including high efficiency, good functional group tolerance, broad substrate scope, and environmentally friendly conditions.
Collapse
Affiliation(s)
- Dezhi Yang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Meng Zhu
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Taimin Wang
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Yixuan He
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Lang Xie
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Jiayong Zhang
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Bin Cheng
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China.
| |
Collapse
|
4
|
Xu JH, Liu ZK, Tang YL, Gao Y, Hu XQ. Merging strain-release and copper catalysis: the selective ring-opening cross-coupling of 1,2-oxazetidines with boronic acids. Chem Commun (Camb) 2022; 58:4180-4183. [PMID: 35266480 DOI: 10.1039/d2cc00461e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An unprecedented ring-opening cross-coupling of 1,2-oxazetidines with readily available arylboronic acids is achieved for the first time by copper catalysis. Unlike the known electrophilic oxygen reactivity in coupling with organometallic reagents, 1,2-oxazetidines were utilized as formaldimine precursors in this protocol. Remarkable features of this reaction include simple operation, inexpensive catalyst, broad scope and high regioselectivity, delivering a wide array of aminomethylation products. The practicality of this reaction was validated in the one-step downstream transformation of the obtained products into synthetically important molecules and late-stage modification of bioactive acids.
Collapse
Affiliation(s)
- Ji-Hang Xu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| | - Zi-Kui Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| | - Yan-Liu Tang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|