1
|
Jin Y, Lee J, Jo W, Yu J, Cho SH. Axially chiral α-boryl-homoallenyl boronic esters as versatile toolbox for accessing centrally and axially chiral molecules. Nat Commun 2024; 15:9239. [PMID: 39455568 PMCID: PMC11511823 DOI: 10.1038/s41467-024-53606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Axially chiral allenes bearing organoboron groups are highly sought-after building blocks in organic synthesis due to their potential for generating a wide range of axially and centrally chiral molecules. However, the existing methods for preparing axially chiral allenes containing boron group are primarily limited to the synthesis of allenyl boronic esters, and strategies for accessing axially chiral homoallenyl boronic esters are still scarce. Here, we report the general method for synthesizing axially chiral α-boryl-homoallenyl boronic esters through a highly regio- and stereoselective copper-mediated SN2'-addition of newly prepared (diborylalkyl)copper species to chiral propargyl electrophiles. The reaction conditions were optimized to achieve high yields and excellent stereospecificity. The obtained products were successfully transformed into various axially chiral allenes and other chiral molecules by transforming diboron units. The potential for axial-to-central chirality transfer of axially chiral α-boryl-homoallenyl boronic esters is also demonstrated through the stereospecific addition to aldehydes and N-H aldimines, yielding enantioenriched 1,2-oxaborinin-3,5-dienes and 2-aminomethyl-1,3-dienes.
Collapse
Affiliation(s)
- Yonghoon Jin
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junseok Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Woohyun Jo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jeongwoo Yu
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
2
|
Bastick KAC, Roberts DD, Watson AJB. The current utility and future potential of multiborylated alkanes. Nat Rev Chem 2024; 8:741-761. [PMID: 39327469 DOI: 10.1038/s41570-024-00650-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
Organoboron chemistry has become a cornerstone of modern synthetic methodology. Most of these reactions use an organoboron starting material that contains just one C(sp2)-B or C(sp3)-B bond; however, there has been a recent and accelerating trend to prepare multiborylated alkanes that possess two or more C(sp3)-B bonds. This is despite a lack of general reactivity, meaning many of these compounds currently offer limited downstream synthetic value. This Review summarizes recent advances in the exploration of multiborylated alkanes, including a discussion on how these products may be elaborated in further synthetic manipulations.
Collapse
Affiliation(s)
- Kane A C Bastick
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Dean D Roberts
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Allan J B Watson
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK.
| |
Collapse
|
3
|
Lei Y, Kong Y, Rong ZQ, Zhao W. Asymmetric dihydroboration of allenes enabled by ligand relay catalysis. Nat Commun 2024; 15:8186. [PMID: 39294125 PMCID: PMC11411108 DOI: 10.1038/s41467-024-51774-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/19/2024] [Indexed: 09/20/2024] Open
Abstract
Catalytic asymmetric hydroboration of unsaturated bonds has been recognized as the most straightforward method for the construction of chiral organoboron compounds. Although catalytic asymmetric hydroboration of alkenes has been well-developed, enantioselective hydroboration of allenes still remains rare probably due to the challenges in controlling the enantio-, stereo-, and regioselectivity. Additionally, the hydroboration products might go through over-borohydride, making the catalytic asymmetric dihydroboration of allenes challenging. Here, we report a cobalt-catalyzed asymmetric dihydroboration of allenes using a ligand relay strategy with two simple ligands. This protocol shows excellent enantio-, stereo-, and regioselectivity with positive functional group compatibilities in the construction of chiral 1,4-diboronate products. The applications of this reaction are demonstrated by various product derivatizations, gram-scale reactions, and the preparation of artigenin analogues. Mechanistic studies indicate that the achiral ligand controls the first hydroboration of allenes, and the chiral oxazoline iminopyridine ligand is responsible for the subsequent isomerization and asymmetric hydroboration.
Collapse
Affiliation(s)
- Yaqin Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| | - Yu Kong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China.
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China.
| |
Collapse
|
4
|
Wei Y, Xie XY, Liu J, Liu X, Zhang B, Chen XY, Li SJ, Lan Y, Hong K. Palladium-Catalyzed Cascade Heck Coupling and Allylboration of Iododiboron Compounds via Diboryl Radicals. Angew Chem Int Ed Engl 2024; 63:e202401050. [PMID: 38444397 DOI: 10.1002/anie.202401050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
Geminal bis(boronates) are versatile synthetic building blocks in organic chemistry. The fact that they predominantly serve as nucleophiles in the previous reports, however, has restrained their synthetic potential. Herein we disclose the ambiphilic reactivity of α-halogenated geminal bis(boronates), of which the first catalytic utilization was accomplished by merging a formal Heck cross-coupling with a highly diastereoselective allylboration of aldehydes or imines, providing a new avenue for rapid assembly of polyfunctionalized boron-containing compounds. We demonstrated that this cascade reaction is highly efficient and compatible with various functional groups, and a wide range of heterocycles. In contrast to a classical Pd(0/II) scenario, mechanistic experiments and DFT calculations have provided strong evidence for a catalytic cycle involving Pd(I)/diboryl carbon radical intermediates.
Collapse
Affiliation(s)
- Yi Wei
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Xiao-Yu Xie
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Jiabin Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaoxiao Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Bo Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Xin-Yi Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Shi-Jun Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yu Lan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China
| | - Kai Hong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
5
|
Paul S, Panda S. Synthesis of Boronic Esters from Organometallic Reagents and Bis(pinacolato)diboron. Chem Asian J 2024; 19:e202300911. [PMID: 38131458 DOI: 10.1002/asia.202300911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
Synthesis of alkyl, aryl, and vinyl boronic esters carrying various chiral and achiral diol-protecting groups were synthesized starting from the corresponding alkyl, aryl, and vinyl lithium or Grignard reagents. Good to excellent yields were obtained for a large range of substrates. The reaction can be conducted in a gram scale to obtain the product over 80 % yield. This approach provides direct access to neopentyl, pinene, and other boronic esters that are difficult to achieve. Using trimethoxyborane or 2-isopropoxy pinacolboronic ester. Detailed mechanistic studies have been conducted to understand the mechanism behind the formation of boronic ester starting from organometallic reagents.
Collapse
Affiliation(s)
- Swagata Paul
- Indian Institute of Technology, Kharagpur, 721302, India
| | - Santanu Panda
- Indian Institute of Technology, Kharagpur, 721302, India
| |
Collapse
|
6
|
Ning PF, Wei Y, Chen XY, Yang YF, Gao FC, Hong K. A General Method to Access Sterically Encumbered Geminal Bis(boronates) via Formal Umpolung Transformation of Terminal Diboron Compounds. Angew Chem Int Ed Engl 2024; 63:e202315232. [PMID: 38059757 DOI: 10.1002/anie.202315232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
General methods for the preparation of geminal bis(boronates) are of great interest due to their widespread applications in organic synthesis. While the terminal gem-diboron compounds are readily accessible, the construction of the sterically encumbered, internal analogues has remained a prominent challenge. Herein, we report a formal umpolung strategy to access these valuable building blocks. The readily available 1,1-diborylalkanes were first converted into the corresponding α-halogenated derivatives, which then serve as electrophilic components, undergoing a formal substitution with a diverse array of nucleophiles to form a series of C-C, C-O, C-S, and C-N bonds. This protocol features good tolerance to steric hindrance and a wide variety of functional groups and heterocycles. Notably, this strategy can also be extended to the synthesis of diaryl and terminal gem-diboron compounds, therefore providing a general approach to various types of geminal bis(boronates).
Collapse
Affiliation(s)
- Peng-Fei Ning
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Yi Wei
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Xin-Yi Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Yi-Fei Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Feng-Chen Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Kai Hong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
7
|
Ahmed EAMA, Zhang H, Cao WG, Gong TJ. Palladium-Catalyzed Cross-Coupling of gem-Difluorocyclopropanes with gem-Diborylalkanes for the Synthesis of Boryl-Substituted Fluorinated Alkenes. Org Lett 2023; 25:9020-9024. [PMID: 38063840 DOI: 10.1021/acs.orglett.3c03626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
This study presents a novel method for the regioselective coupling of gem-difluorinated cyclopropanes with gem-diborylmethane, utilizing a Pd-catalyst system. This innovative approach enables the synthesis of 2-fluoroalkenyl monoboronate scaffolds with high Z-selectivity. The resulting products undergo further transformations, including oxidation, Suzuki cross-coupling, and trifluoroborylation, all of which are achieved with good yields. This work introduces a valuable synthetic pathway to access important fluorinated compounds for various applications in organic chemistry.
Collapse
Affiliation(s)
| | - Hongchen Zhang
- College of pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Wen-Gen Cao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Tian-Jun Gong
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
8
|
Jiang XM, Ji CL, Ge JF, Zhao JH, Zhu XY, Gao DW. Asymmetric Synthesis of Chiral 1,2-Bis(Boronic) Esters Featuring Acyclic, Non-Adjacent 1,3-Stereocenters. Angew Chem Int Ed Engl 2023:e202318441. [PMID: 38098269 DOI: 10.1002/anie.202318441] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Indexed: 12/30/2023]
Abstract
The construction of acyclic, non-adjacent 1,3-stereogenic centers, prevalent motifs in drugs and bioactive molecules, has been a long-standing synthetic challenge due to acyclic nucleophiles being distant from the chiral environment. In this study, we successfully synthesized highly valuable 1,2-bis(boronic) esters featuring acyclic and nonadjacent 1,3-stereocenters. Notably, this reaction selectively produces migratory coupling products rather than alternative deborylative allylation or direct allylation byproducts. This approach introduces a new activation mode for selective transformations of gem-diborylmethane in asymmetric catalysis. Additionally, we found that other gem-diborylalkanes, previously challenging due to steric hindrance, also successfully participated in this reaction. The incorporation of 1,2-bis(boryl)alkenes facilitated the diversification of the alkenyl and two boron moieties in our target compounds, thereby enabling access to a broad array of versatile molecules. DFT calculations were performed to elucidate the reaction mechanism and shed light on the factors responsible for the observed excellent enantioselectivity and diastereoselectivity. These were determined to arise from ligand-substrate steric repulsions in the syn-addition transition state.
Collapse
Affiliation(s)
- Xia-Min Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Chong-Lei Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Jian-Fei Ge
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Jia-Hui Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Xin-Yuan Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - De-Wei Gao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
9
|
Lou X, Lin J, Kwok CY, Lyu H. Stereoselective Unsymmetrical 1,1-Diborylation of Alkynes with a Neutral sp 2 -sp 3 Diboron Reagent. Angew Chem Int Ed Engl 2023; 62:e202312633. [PMID: 37822069 DOI: 10.1002/anie.202312633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
The incorporation of two distinct boryl groups at the same carbon center in organic molecules has attracted growing research interest due to its potential for facilitating controlled, precise synthesis through stepwise dual carbon-boron bond transformations. Here we report a method to access unsymmetrical 1,1-diborylalkene (UDBA) stereoselectively via the reaction of readily available alkynes with a neutral sp2 -sp3 diboron reagent (NHC)BH2 -Bpin (NHC=N-heterocyclic carbene). Attributing to the chemically easily distinguishable nature of the sp2 and sp3 boryl moieties, controllable stepwise derivatization of the resultant UDBAs is realized. This process leads to various multifunctionalized olefins and organoborons, such as acylboranes, which are difficult to prepare by other methods.
Collapse
Affiliation(s)
- Xiangyu Lou
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Jiaxin Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Chun Yin Kwok
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Hairong Lyu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| |
Collapse
|
10
|
Wang W, Huang D, Yu Y, Qian H, Ma S. A Modular Approach for the Synthesis of Natural and Artificial Terpenoids. Angew Chem Int Ed Engl 2023; 62:e202307626. [PMID: 37439109 DOI: 10.1002/anie.202307626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/14/2023]
Abstract
Many terpenoids with isoprene unit(s) demonstrating critical biological activities have been isolated and characterized. In this study, we have developed a robust chem-stamp strategy for the construction of the key isoprene unit, which consists of two steps: one-carbon extension of aldehydes to the alkenyl boronates by the boron-Wittig reaction and the rhodium-catalyzed reaction of alkenyl boronates with 2,3-allenols to yield enals. This chem-stamp could readily be applied repeatedly and separately, enabling the modular concise synthesis of many natural and pharmaceutically active terpenoids, including retinal, β-carotene, vitamin A, tretinoin, fenretinide, acitretin, ALRT1550, nigerapyrone C, peretinoin, and lycopene. Owing to the diversified availability of the starting materials, aldehydes and 2,3-allenols, creation of new non-natural terpenoids has been realized from four dimensions: the number of isoprene units, the side chain, and the two terminal groups.
Collapse
Affiliation(s)
- Weiyi Wang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, P. R. China
| | - Dongyu Huang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, P. R. China
| | - Yibo Yu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, P. R. China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China
| |
Collapse
|
11
|
Wang B, Zhang X, Cao Y, Zou L, Qi X, Lu Q. Electrooxidative Activation of B-B Bond in B 2 cat 2 : Access to gem-Diborylalkanes via Paired Electrolysis. Angew Chem Int Ed Engl 2023; 62:e202218179. [PMID: 36722684 DOI: 10.1002/anie.202218179] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
This report describes the unprecedented electrooxidation of a solvent (e.g., DMF)-ligated B2 cat2 complex, whereby a solvent-stabilized boryl radical is formed via quasi-homolytic cleavage of the B-B bond in a DMF-ligated B2 cat2 radical cation. Cyclic voltammetry and density functional theory provide evidence to support this novel B-B bond activation strategy. Furthermore, a strategy for the electrochemical gem-diborylation of gem-bromides via paired electrolysis is developed for the first time, affording a range of versatile gem-diborylalkanes, which are widely used in synthetic society. Notably, this reaction approach is scalable, transition-metal-free, and requires no external activator.
Collapse
Affiliation(s)
- Bingbing Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xiangyu Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yangmin Cao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Long Zou
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
12
|
Guo P, Jin H, Han J, Xu L, Li P, Zhan M. Nickel-Catalyzed Negishi Cross-Coupling of Alkyl Halides, Including Unactivated Tertiary Halides, with a Boron-Stabilized Organozinc Reagent. Org Lett 2023. [PMID: 36866526 DOI: 10.1021/acs.orglett.3c00051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Nickel-catalyzed cross-coupling of unactivated tertiary alkyl electrophiles with alkylmetal reagents is still a challenge. We report herein a nickel-catalyzed Negishi cross-coupling of alkyl halides, including unactivated tertiary halides, with boron-stabilized organozinc reagent BpinCH2ZnI, yielding versatile organoboron products with high functional-group tolerance. Importantly, the Bpin group was found to be indispensable for accessing the quaternary carbon center. The synthetic practicability of the prepared quaternary organoboronates was demonstrated by their conversion to other useful compounds.
Collapse
Affiliation(s)
- Panchi Guo
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Hao Jin
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Jinhui Han
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an 710054, China
| | - Miao Zhan
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| |
Collapse
|
13
|
Bao Z, Huang M, Xu Y, Zhang X, Wu YD, Wang J. Selective Formal Carbene Insertion into Carbon-Boron Bonds of Diboronates by N-Trisylhydrazones. Angew Chem Int Ed Engl 2023; 62:e202216356. [PMID: 36576426 DOI: 10.1002/anie.202216356] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 12/29/2022]
Abstract
Bisborylalkanes play important roles in organic synthesis as versatile bifunctional reagents. The two boron moieties in these compounds can be selectively converted into other functional groups through cross-coupling, oxidation or radical reactions. Thus, the development of efficient methods for synthesizing bisborylalkanes is highly demanded. Herein we report a new strategy to access bisborylalkanes through the reaction of N-trisylhydrazones with diboronate, in which the bis(boryl) methane is transformed into 1,2-bis(boronates) via formal carbene insertion. Since the N-trisylhydrazones can be readily derived from the corresponding aldehydes, this strategy represents a practical synthesis of 1,2-diboronates with broad substrate scope. Mechanistic studies reveal an unusual neighboring group effect of 1,1-bis(boronates), which accounts for the observed regioselectivity when unsymmetric 1,1-diboronates are applied.
Collapse
Affiliation(s)
- Zhicheng Bao
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Meirong Huang
- Shenzhen Bay Laboratory, Shenzhen, 518132, P. R. China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Yan Xu
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, Shenzhen, 518132, P. R. China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Shenzhen, 518132, P. R. China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| |
Collapse
|
14
|
Li Y, Shen D, Zhang H, Liu Z. Transition-metal-free coupling reactions involving gem-diborylalkanes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Hazra S, Mahato S, Kanti Das K, Panda S. Transition-Metal-Free Heterocyclic Carbon-Boron Bond Formation. Chemistry 2022; 28:e202200556. [PMID: 35438817 DOI: 10.1002/chem.202200556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 12/16/2022]
Abstract
Heteroaryl boronic acids and esters are extremely important and valuable intermediates because of their wide application in the synthesis of marketed drugs and bioactive compounds. Over the last couple of decades, the construction of highly important heteroaryl carbon-boron bonds has created huge attention. The transition-metal-free protocols are more green, less sensitive to air and moisture, and also economically advantageous over the transition-metal-based protocols. The transition-metal-free C-H borylation of heteroarenes and C-X (X=halogen) borylation of heteroaryl halides represents an excellent approach for their synthesis. Also, various cyclization and alkyne activation protocols have been recently established for their synthesis. The goal of this review article is to summarize the existing literature and the current state of the art for transition-metal-free synthesis of heteroaryl boronic acid and esters.
Collapse
Affiliation(s)
- Subrata Hazra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Somenath Mahato
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Kanak Kanti Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Santanu Panda
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
16
|
Zhang M, Xu P, Vendola AJ, Allais C, Dechert Schmitt AM, Singer RA, Morken JP. Stereocontrolled Pericyclic and Radical Cycloaddition Reactions of Readily Accessible Chiral Alkenyl Diazaborolidines. Angew Chem Int Ed Engl 2022; 61:e202205454. [PMID: 35587213 PMCID: PMC9296615 DOI: 10.1002/anie.202205454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 07/27/2023]
Abstract
In this paper is described an easily synthesized chiral diazaborolidine that is inexpensive, stable, and provides excellent stereoselection across a number of reaction classes. These versatile compounds possess utility in four different classes of cycloaddition reactions, offering good yield and stereoselectivity. X-ray structure analysis provides insight about the origin of stereocontrol.
Collapse
Affiliation(s)
- Mingkai Zhang
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Peilin Xu
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Alex J Vendola
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Christophe Allais
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06430, USA
| | | | - Robert A Singer
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06430, USA
| | - James P Morken
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| |
Collapse
|
17
|
Zhang M, Xu P, Vendola AJ, Allais C, Dechert Schmitt A, Singer RA, Morken JP. Stereocontrolled Pericyclic and Radical Cycloaddition Reactions of Readily Accessible Chiral Alkenyl Diazaborolidines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingkai Zhang
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Peilin Xu
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Alex J. Vendola
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Christophe Allais
- Pfizer Worldwide Research and Development Eastern Point Road Groton CT 06430 USA
| | | | - Robert A. Singer
- Pfizer Worldwide Research and Development Eastern Point Road Groton CT 06430 USA
| | - James P. Morken
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| |
Collapse
|
18
|
Mahato S, Nandy S, Das KK, Panda S. Zirconium Promoted Synthetic Transformations of Organoboron Compounds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Somenath Mahato
- IIT Kharagpur: Indian Institute of Technology Kharagpur chemistry INDIA
| | - Soumilee Nandy
- IIT Kharagpur: Indian Institute of Technology Kharagpur chemistry INDIA
| | - Kanak Kanti Das
- IIT Kharagpur: Indian Institute of Technology Kharagpur chemistry INDIA
| | - Santanu Panda
- Indian Institute of Technology Kharagpur Department of Chemistry Chemistry IIT Kharagpur, Organic chemistry building, OC-207Near Rubber technology department 721302 Kharagpur INDIA
| |
Collapse
|
19
|
Selmani A, Schoetz MD, Queen AE, Schoenebeck F. Modularity in the C sp3 Space─Alkyl Germanes as Orthogonal Molecular Handles for Chemoselective Diversification. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Aymane Selmani
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Markus D. Schoetz
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Adele E. Queen
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|