1
|
Arshad M, Sowmya P, Paul A, Joseph A. Sensing of picric acid using an AIEE active "Turn Off" fluorescent probe derived from hydroxy naphthaldehyde and benzyloxy benzaldehyde. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123465. [PMID: 37783035 DOI: 10.1016/j.saa.2023.123465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
A novel Schiff base with AIEE characteristics has been developed and used as a chemosensor for picric acid in aqueous media. The Schiff base 1-((E)-((E)-(4-(benzyloxy) benzylidene) hydrazono) methyl) naphthalen-2-ol [BBHN] with strong fluorescence emission was obtained by the simple condensation of 1-(hydrazonomethyl)naphthan-2-ol and 4-benzoxy benzaldehyde. The characterization of BBHN was done using Fourier Transfer Infra-Red, UV-visible, Magnetic Resonance (1H and 13C) spectroscopy, and HRMS. The sensing behaviour of BBHN aggregates towards nitro explosive was then investigated. The aggregates of BBHN showed a quick, highly selective, and sensitive fluorescence 'Turn Off' response towards picric acid (PA) in an aqueous medium among various other nitroaromatics. The limit of detection was 4.04 µM with 2.03 × 106 M-1 as the quenching constant. The fluorescence "Turn Off" response in the presence of PA is mainly due to π-π interactions, and non-covalent hydrogen bonding interactions. Moreover, steady-state fluorescence lifetime measurement and Stern - Volmer plots reveal that the fluorescence quenching followed mixed quenching strategies.
Collapse
Affiliation(s)
- Muhammed Arshad
- Department of Chemistry, University of Calicut, Calicut University P O-673 635, India
| | - P Sowmya
- Department of Chemistry, University of Calicut, Calicut University P O-673 635, India
| | - Anila Paul
- Department of Chemistry, University of Calicut, Calicut University P O-673 635, India
| | - Abraham Joseph
- Department of Chemistry, University of Calicut, Calicut University P O-673 635, India.
| |
Collapse
|
2
|
Tyagi R, Yadav K, Srivastava N, Sagar R. Applications of Pyrrole and Pyridine-based Heterocycles in Cancer Diagnosis and Treatment. Curr Pharm Des 2024; 30:255-277. [PMID: 38711394 DOI: 10.2174/0113816128280082231205071504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/23/2023] [Indexed: 05/08/2024]
Abstract
BACKGROUND The escalation of cancer worldwide is one of the major causes of economy burden and loss of human resources. According to the American Cancer Society, there will be 1,958,310 new cancer cases and 609,820 projected cancer deaths in 2023 in the United States. It is projected that by 2040, the burden of global cancer is expected to rise to 29.5 million per year, causing a death toll of 16.4 million. The hemostasis regulation by cellular protein synthesis and their targeted degradation is required for normal cell growth. The imbalance in hemostasis causes unbridled growth in cells and results in cancer. The DNA of cells needs to be targeted by chemotherapeutic agents for cancer treatment, but at the same time, their efficacy and toxicity also need to be considered for successful treatment. OBJECTIVE The objective of this study is to review the published work on pyrrole and pyridine, which have been prominent in the diagnosis and possess anticancer activity, to obtain some novel lead molecules of improved cancer therapeutic. METHODS A literature search was carried out using different search engines, like Sci-finder, Elsevier, ScienceDirect, RSC etc., for small molecules based on pyrrole and pyridine helpful in diagnosis and inducing apoptosis in cancer cells. The research findings on the application of these compounds from 2018-2023 were reviewed on a variety of cell lines, such as breast cancer, liver cancer, epithelial cancer, etc. Results: In this review, the published small molecules, pyrrole and pyridine and their derivatives, which have roles in the diagnosis and treatment of cancers, were discussed to provide some insight into the structural features responsible for diagnosis and treatment. The analogues with the chromeno-furo-pyridine skeleton showed the highest anticancer activity against breast cancer. The compound 5-amino-N-(1-(pyridin-4- yl)ethylidene)-1H-pyrazole-4-carbohydrazides was highly potent against HEPG2 cancer cell. Redaporfin is used for the treatment of cholangiocarcinoma, biliary tract cancer, cisplatin-resistant head and neck squamous cell carcinoma, and pigmentation melanoma, and it is in clinical trials for phase II. These structural features present a high potential for designing novel anticancer agents for diagnosis and drug development. CONCLUSION Therefore, the N- and C-substituted pyrrole and pyridine-based novel privileged small Nheterocyclic scaffolds are potential molecules used in the diagnosis and treatment of cancer. This review discusses the reports on the synthesis of such molecules during 2018-2023. The review mainly discusses various diagnostic techniques for cancer, which employ pyrrole and pyridine heterocyclic scaffolds. Furthermore, the anticancer activity of N- and C-substituted pyrrole and pyridine-based scaffolds has been described, which works against different cancer cell lines, such as MCF-7, A549, A2780, HepG2, MDA-MB-231, K562, HT- 29, Caco-2 cells, Hela, Huh-7, WSU-DLCL2, HCT-116, HBL-100, H23, HCC827, SKOV3, etc. This review will help the researchers to obtain a critical insight into the structural aspects of pyrrole and pyridine-based scaffolds useful in cancer diagnosis as well as treatment and design pathways to develop novel drugs in the future.
Collapse
Affiliation(s)
- Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110007, India
| | - Kanchan Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110007, India
| | - Nitin Srivastava
- Department of Chemistry, Amity University Lucknow Campus, Lucknow, Uttar Pradesh 226028, India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110007, India
| |
Collapse
|
3
|
Seidel P, Seichter W, Mazik M. Compounds Derived from 9,9-Dialkylfluorenes: Syntheses, Crystal Structures and Initial Binding Studies (Part II). ChemistryOpen 2023; 12:e202300019. [PMID: 37442791 PMCID: PMC10344870 DOI: 10.1002/open.202300019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/10/2023] [Indexed: 07/15/2023] Open
Abstract
New representatives of 2,4,7-trisubstituted 9,9-dialkyl-9H-fluorenes were prepared and used for crystallographic investigations as well as initial binding studies towards metal ions and carbohydrates. The binding studies, which included 1 H NMR spectroscopic titrations and fluorescence measurements, demonstrated the ability of the tested fluorene-based compounds to act as complexing agents for ionic and neutral substrates. Depending on the nature of the subunits of the fluorene derivatives, "turn on" or "turn off" fluorescent chemosensors can be developed. Compounds composed of 4,6-dimethylpyridin-2-yl-aminomethyl moieties have the potential to be used as sensitive "turn-on" chemosensors for some metal ions.
Collapse
Affiliation(s)
- Pierre Seidel
- Institut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Straße 29, 09599, Freiberg, Germany
| | - Wilhelm Seichter
- Institut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Straße 29, 09599, Freiberg, Germany
| | - Monika Mazik
- Institut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Straße 29, 09599, Freiberg, Germany
| |
Collapse
|
4
|
Sonkaya Ö, Ocakçı Ş, Toksoy A, Pamuk Algi M, Algi F. N-doped carbon nanomaterials as fluorescent pH and metal ion sensors for imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122412. [PMID: 36720189 DOI: 10.1016/j.saa.2023.122412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Herein we describe the facile synthesis of new N-doped carbon nanoparticles (CNPs) obtained from 1,10-phenanthroline by the solvothermal method. Characterization of CNPs were carried out with transmission electron microscope (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectra (FTIR), UV-vis absorption spectra, and luminescence spectra. CNPs were pH sensitive and exploited as fluorescent chemosensors and imaging agents for Al(III) and Zn(II) ions in real-life samples. Remarkably, we show that CNPs can be used for the detection of Al(III) and Zn(II) ions in water samples. Accordingly, the results indicate that CNPs are highly effective in detecting Zn(II) content of cosmetic creams. We also demonstrated that the CNPs could be used for in vitro imaging of Al(III) and Zn(II) in Human Larynx Squamous Cell Carcinoma (Hep-2). Finally, Al(III) imaging in Angelica Officinalis root tissue was also achieved successfully. The CNPs are promising as luminescent multianalyte (pH, Al(III) and Zn(II)) sensors.
Collapse
Affiliation(s)
- Ömer Sonkaya
- Department of Chemistry & ASUBTAM M. Bilmez BioNanoTech Lab, Aksaray University, TR-68100 Aksaray, Turkey
| | - Şeyma Ocakçı
- Department of Biotechnology & ASUBTAM M. Bilmez BioNanoTech Lab, Aksaray University, TR-68100 Aksaray, Turkey
| | - Alihan Toksoy
- Department of Biotechnology & ASUBTAM M. Bilmez BioNanoTech Lab, Aksaray University, TR-68100 Aksaray, Turkey
| | - Melek Pamuk Algi
- Department of Chemistry & ASUBTAM M. Bilmez BioNanoTech Lab, Aksaray University, TR-68100 Aksaray, Turkey.
| | - Fatih Algi
- Department of Biotechnology & ASUBTAM M. Bilmez BioNanoTech Lab, Aksaray University, TR-68100 Aksaray, Turkey.
| |
Collapse
|
5
|
Wang H, Zhang Y, Xu Y, Wang X, Zeng J, Xue L. A Novel Coumarin‐Based Fluorescent Probe for Sequential Detection of Al
3+
and H
2
PO
4
−. ChemistrySelect 2023. [DOI: 10.1002/slct.202204839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Haibin Wang
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan Ningxia P. R. China 756000
| | - Yang Zhang
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan Ningxia P. R. China 756000
| | - Yang Xu
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan Ningxia P. R. China 756000
| | - Xin Wang
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan Ningxia P. R. China 756000
| | - Junzhu Zeng
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan Ningxia P. R. China 756000
| | - Lei Xue
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan Ningxia P. R. China 756000
| |
Collapse
|
6
|
Saha S, Das KS, Pal P, Hazra S, Ghosh A, Bala S, Ghosh A, Das AK, Mondal R. A Silver-Based Integrated System Showing Mutually Inclusive Super Protonic Conductivity and Photoswitching Behavior. Inorg Chem 2023; 62:3485-3497. [PMID: 36780226 DOI: 10.1021/acs.inorgchem.2c03785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Photoinduced electricity and proton conductivity led fuel cells have emerged, inter alia, as highly promising systems for unconventional energy harvesting. Notwithstanding their individual presence with widely acclaimed results, an integrating system with mutually inclusive manifestation of both features has hitherto not been reported in the literature. To achieve this objective, our approach was to design a ligand system incorporating prerequisite features of both systems, like extended conjugation instigating photophysical activity and functional groups facilitating ionic conduction. As such, we report herein the design, synthesis, and characterization of a pyridyl-pyrazole-based silver compound that exhibits an excellent photocurrent generation and very high proton conductivity. The X-ray single-crystal structure of the Ag complex fully supports our notion, showing extensive π-π conjugated aromatic rings with a protruding free sulfonic group, facing toward solvent-filled channels with numerous supramolecular interactions. The nanoscopic silver metallogel induces semiconductive features in the system which ultimately result in photoresponse behavior in terms of photocurrent generation with an whopping photocurrent gain (Ion/Ioff) of 21.2. To complete the idea of an integrated system, the proton conductivity values were also measured for both gel and crystalline states, while the former state yields a better result. The maximum proton conductivity value turns out to be 1.03 × 10-2 S cm-1 at 70 °C, which is higher than or comparable to those of well-known systems in the literature for proton conductivity.
Collapse
Affiliation(s)
- Sayan Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Krishna Sundar Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Pulak Pal
- School of Physical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Soumyajit Hazra
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Avik Ghosh
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Sukhen Bala
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Aswini Ghosh
- School of Physical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Abhijit Kumar Das
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Raju Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| |
Collapse
|
7
|
Dey B, Pahari P, Sahoo SK, Kumar Atta A. Triazole-based pyrene-sugar analogues for selective detection of picric acid in water medium and paper strips. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
8
|
Vora M, Dey S, Kongor A, Panchal M, Verma A, Trivedi P, Sindhav G, Jain V. CHEF induced fluorometric sensing of Al3+ and picric acid with bioimaging in human peripheral blood mononuclear cell. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
A novel multi-purpose convenient Al3+ ion fluorescent probe based on phenolphthalein. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Ananthan Karthick K, Shankar B, Kubendran Aravind M, Ashokkumar B, Tamilselvi A. Small‐Molecule Fluorescent Probe: Ratiometric and Selective Detection of Sodium Ions for Imaging and Solid‐State Sensing Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202203235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Kettalu Ananthan Karthick
- PG & Research Department of Chemistry Thiagarajar College Affiliated to Madurai Kamaraj University) Madurai 625 009 India
| | - Bhaskaran Shankar
- Department of Chemistry Thiagarajar College of Engineering Madurai 625 015 India
| | | | | | - Arunachalam Tamilselvi
- PG & Research Department of Chemistry Thiagarajar College Affiliated to Madurai Kamaraj University) Madurai 625 009 India
| |
Collapse
|
11
|
Christopher Leslee DB, Karuppannan S. Unique carbazole – N,N-dimethylanline linked chalcone a colorimetric and fluorescent probe for picric acid explosive and its test strip analysis. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Fluorimetric quantification of picric acid in aqueous medium via smartphone and invisible ink applications using pyrene based sensor. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
|
14
|
Ganesan G, Pownthurai B, Kotwal NK, Yadav M, Chetti P, Chaskar A. Function-oriented synthesis of fluorescent chemosensor for selective detection of Al3+ in neat aqueous solution: Paperstrip detection & DNA bioimaging. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Goel A, Malhotra R. Efficient detection of Picric acid by pyranone based Schiff base as a chemosensor. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Das KS, Saha S, Pal B, Adhikary A, Moorthy S, Bala S, Akhtar S, Ghose PK, Singh SK, Ray PP, Mondal R. A Nd6 molecular butterfly: a unique all-in-one material for SMM, MCE and maiden photosensitized opto-electronic device fabrication. Dalton Trans 2022; 51:1617-1633. [PMID: 34994757 DOI: 10.1039/d1dt02364k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Besides iron, ironically neodymium (Nd) is the most ubiquitously used metal for magnetic purposes, even among the lanthanides, when it comes to the field of molecular magnetism, yet it ranks among the least studied metals. However, strong apathy towards this magnetic lanthanide means that vital information will be missed, which is required for the advancement of the subject. Herein, we have successfully demonstrated the usefulness of a hexanuclear neodymium complex as a magnetic material, and also in electronic device fabrication. A {NdIII6} cage with an aesthetically pleasing butterfly topology was synthesized using a rather non-conventional N-rich pyridyl-pyrazolyl based ligand. The cage shows single molecule magnet (SMM) properties, with an effective energy barrier, Ueff, value of 3.4 K and relaxation time, τ0, of 3.1 × 10-4 s, originating from an unusual occurrence of metal centres with different coordination environments. Furthermore, magnetic studies reveal significant cyrogenic magnetic cooling, with a magnetic entropy change of 8.28 J kg-1 K-1 at 5 T and 3 K. To the best of our knowledge, the titular compound is the only example of a Nd-complex that exhibits concomitant magnetocaloric effect (MCE) and SMM properties. Complete active space self-consistent field (CASSCF) calculations were carried out to shed light on the origin of the magnetic anisotropy and magnetic relaxation of the compound. The same uniqueness is also true for the first electronic investigation carried out on the Nd complex. The maiden electronic device fabricated using the Nd complex shows an interesting intertwining of electronic and optical features, which contribute towards its improved photosensitized optoelectronic data.
Collapse
Affiliation(s)
- Krishna Sundar Das
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Kolkata-700032, West Bengal, India.
| | - Sayan Saha
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Kolkata-700032, West Bengal, India.
| | - Baishakhi Pal
- Department of Physics, Jadavpur University, Jadavpur, Kolkata 700 032, India
| | - Amit Adhikary
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Kolkata-700032, West Bengal, India.
| | - Shruti Moorthy
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy-502284, Telangana, India
| | - Sukhen Bala
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Kolkata-700032, West Bengal, India.
| | - Sohel Akhtar
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Kolkata-700032, West Bengal, India.
| | - Pradeepta Kumar Ghose
- School of Physical Science, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Kolkata-700032, West Bengal, India
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy-502284, Telangana, India
| | - Partha Pratim Ray
- Department of Physics, Jadavpur University, Jadavpur, Kolkata 700 032, India
| | - Raju Mondal
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Kolkata-700032, West Bengal, India.
| |
Collapse
|
17
|
Saha S, Das KS, Sharma T, Bala S, Adhikary A, Huang GZ, Tong ML, Ghosh A, Das B, Rajaraman G, Mondal R. Synergistic Experimental and Theoretical Studies of Luminescent-Magnetic Ln 2Zn 6 Clusters. Inorg Chem 2022; 61:2141-2153. [PMID: 35049278 DOI: 10.1021/acs.inorgchem.1c03359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The present work is part of our ongoing quest for developing functional inorganic complexes using unorthodox pyridyl-pyrazolyl-based ligands. Accordingly, we report herein the synthesis, characterization, and luminescence and magnetic properties of four 3d-4f mixed-metal complexes with a general core of Ln2Zn6 (Ln = Dy, Gd, Tb, and Eu). In stark contrast to the popular wisdom of using a compartmental ligand with separate islands of hard and soft coordinating sites for selective coordination, we have vindicated our approach of using a ligand with overcrowded N-coordinating sites that show equal efficiency with both 4f and 3d metals toward multinuclear cage-cluster formation. The encouraging red and green photolumiscent features of noncytotoxic Eu2Zn6 and Tb2Zn6 complexes along with their existence in nanoscale dimension have been exploited with live-cell confocal microscopy imaging of human breast adenocarcinoma (MCF7) cells. The magnetic features of the Dy2Zn6 complex confirm the single-molecule-magnet behavior with befitting frequency- and temperature-dependent out-of-phase signals along with an Ueff value of ∼5 K and a relaxation time of 8.52 × 10-6 s. The Gd2Zn6 complex, on the other hand, shows cryogenic magnetic refrigeration with an entropy change of 11.25 J kg-1 K-1 at a magnetic field of 7 T and at 2 K. Another important aspect of this work reflects the excellent agreement between the experimental results and theoretical calculations. The theoretical studies carried out using the broken-symmetry density functional theory, ORCA suite of programs, and MOLCAS calculations using the complete-active-space self-consistent-field method show an excellent synergism with the experimentally measured magnetic and spectroscopic data.
Collapse
Affiliation(s)
- Sayan Saha
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Krishna Sundar Das
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Tanu Sharma
- Department of Chemistry, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Sukhen Bala
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Amit Adhikary
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Guo-Zhang Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Arjit Ghosh
- School of Biological Science Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Benubrata Das
- School of Biological Science Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Raju Mondal
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| |
Collapse
|
18
|
Narwane M, Dorairaj DP, Chang YL, Karvembu R, Huang YH, Chang HW, Hsu SCN. Tris-(2-pyridyl)-pyrazolyl Borate Zinc(II) Complexes: Synthesis, DNA/Protein Binding and In Vitro Cytotoxicity Studies. Molecules 2021; 26:7341. [PMID: 34885924 PMCID: PMC8659194 DOI: 10.3390/molecules26237341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Zn(II) complexes bearing tris[3-(2-pyridyl)-pyrazolyl] borate (Tppy) ligand (1-3) was synthesized and examined by spectroscopic and analytical tools. Mononuclear [TppyZnCl] (1) has a Zn(II) centre with one arm (pyrazolyl-pyridyl) dangling outside the coordination sphere which is a novel finding in TppyZn(II) chemistry. In complex [TppyZn(H2O)][BF4] (2) hydrogen bonding interaction of aqua moiety stabilizes the dangling arm. In addition, solution state behaviour of complex 1 confirms the tridentate binding mode and reactivity studies show the exogenous axial substituents used to form the [TppyZnN3] (3). The complexes (1-3) were tested for their ability to bind with Calf thymus (CT) DNA and Bovine serum albumin (BSA) wherein they revealed to exhibit good binding constant values with both the biomolecules in the order of 104-105 M-1. The intercalative binding mode with CT DNA was confirmed from the UV-Visible absorption, viscosity, and ethidium bromide (EB) DNA displacement studies. Further, the complexes were tested for in vitro cytotoxic ability on four triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, MDA-MB-468, HCC1937, and Hs 578T). All three complexes (1-3) exhibited good IC50 values (6.81 to 16.87 μM for 24 h as seen from the MTS assay) results which indicated that these complexes were found to be potential anticancer agents against the TNBC cells.
Collapse
Affiliation(s)
- Manmath Narwane
- Drug Development and Value Creation Research Centre, Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (M.N.); (D.P.D.); (Y.-L.C.)
| | - Dorothy Priyanka Dorairaj
- Drug Development and Value Creation Research Centre, Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (M.N.); (D.P.D.); (Y.-L.C.)
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India;
| | - Yu-Lun Chang
- Drug Development and Value Creation Research Centre, Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (M.N.); (D.P.D.); (Y.-L.C.)
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India;
| | - Yu-Han Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Sodio C. N. Hsu
- Drug Development and Value Creation Research Centre, Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (M.N.); (D.P.D.); (Y.-L.C.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
19
|
Pal A, Karmakar M, Bhatta SR, Thakur A. A detailed insight into anion sensing based on intramolecular charge transfer (ICT) mechanism: A comprehensive review of the years 2016 to 2021. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Xiu D, Shi J, Deng M, Song H, Hao Z, Feng Q, Yu H. A new fluorescent chemosensor for Al(III) detection with highly selective in aqueous solution and solid test paper. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|