1
|
Erdoğan M, Comert Onder F. Synthesis, anticancer activity and molecular modeling study of novel substituted triazole linked tetrafluoronaphthalene hybrid derivatives. J Biomol Struct Dyn 2024; 42:9767-9786. [PMID: 37676264 DOI: 10.1080/07391102.2023.2252914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
To create some novel anticancer molecules, a library of novel series of various triazoles linked to the hydroxyl group of 5,6,7,8-tetrafluoronaphthalen-1-ol (3) was designed and synthesized via CuAAC reaction 'Click Chemistry' of tetrafluoronaphthalene based terminal alkyne with substituted organic azides. The structural characterizations of the targeted Click products 9-18 were confirmed by FTIR, 1H NMR, 19F NMR, 13C NMR and HRMS spectroscopy. Synthesized compounds were tested in two triple negative breast cancer (TNBC) cell lines to understand their anticancer potentials. According to our findings, compounds 14 and 13 showed high cytotoxicity in BT549 cells at 20 μM and 30 μM, respectively. Moreover, these compounds blocked the migration of BT549 cells. In the MDA-MB-231 cell line, compound 18 exhibited high cytotoxicity and can block cell migration for 24 h. Molecular docking study with synthesized novel compounds was performed by Glide/SP method against SphK1 drug target. Furthermore, molecular dynamics (MD) simulation was carried out for the compounds 12-14 and 18. The compounds 13 and 14 may be potential inhibitor candidates in place of a reference inhibitor. A pharmacophore model was generated with the most potent compound 14, and the approved drugs were screened using the modules of Discovery Studio to find similar drugs. Consequently, this comprehensive study encompassing design, synthesis, in vitro and in silico analyses were correlated with the structure-activity relationship between compounds. The findings have the potential to unveil promising drug candidates for future studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Musa Erdoğan
- Department of Food Engineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Türkiye
| | - Ferah Comert Onder
- Department of Medical Biology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
2
|
Gopi B, Vijayakumar V. An efficient and simple approach for synthesizing indazole compounds using palladium-catalyzed Suzuki-Miyaura cross-coupling. RSC Adv 2024; 14:26494-26504. [PMID: 39175677 PMCID: PMC11339776 DOI: 10.1039/d4ra04633a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024] Open
Abstract
A series of indazole derivatives (6a-6i and 7a-7i) has been synthesized using Suzuki Miyaura cross-coupling with a palladium catalyst from readily available starting materials. An efficient and reliable methodology was employed for the synthesis, and the compounds were thoroughly characterized using 1H NMR, 13C NMR, FT-IR, and HRMS analysis to confirm their structural integrity and purity. Density function theory (DFT) computation identified four compounds (6g, 6h, 7g, and 7h) with significant energy band gaps. Additionally, the molecular electrostatic potential study highlighted the distinct electrical characteristics of these indazole molecules. Subsequent molecular docking investigations were carried out using the AUTODOCK method with two separate protein data bank (PDB) structures (6FEW, 4WA9) involved in renal cancer pathways. The results showed that eight substances PDB: 6FEW (6g, 6h, 7g, and 7h) and PDB: 4WA9 (6a, 6c, and 7c, 7g) had the highest binding energies, indicating their potential as therapeutic agents for treating kidney cancer.
Collapse
Affiliation(s)
- Bandaru Gopi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore 632014 India
| | | |
Collapse
|
3
|
Gopi B, Vijayakumar V. Synthesis molecular docking and DFT studies on novel indazole derivatives. RSC Adv 2024; 14:13218-13226. [PMID: 38655475 PMCID: PMC11037238 DOI: 10.1039/d4ra02151g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
The amide bond is an important functional group used in various fields of chemistry, including organic synthesis, drug discovery, polymers, and biology. Although normal amides are planar, and the amide has an N-C(O) bond, herein, the 26 indazole derivatives were reported via amide cross-coupling (8a-8z). Using IR, 1H NMR, 13C NMR, and mass spectrometry, all of the produced compounds were analysed. A DFT computational study was also conducted using GAUSSIAN 09-Gaussian View 6.1, which revealed that 8a, 8c, and 8s had the most substantial HOMO-LUMO energy gap. The effectiveness of indazole moieties with renal cancer-related protein (PDB: 6FEW) was assessed by docking the derivatives using Autodock 4. The analysis showed that derivatives 8v, 8w, and 8y had the highest binding energies.
Collapse
Affiliation(s)
- Bandaru Gopi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore - 632014 India
| | | |
Collapse
|
4
|
Puri S, Sawant S, Juvale K. A comprehensive review on the indazole based derivatives as targeted anticancer agents. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
5
|
Kuroyanagi S, Kikuchi S, Sumikoshi S, Uwano M, Chiba T, Yamakado R, Okada S. Synthesis of 3‐(Phenylcarbonyl)‐1H‐indazole Derivatives via Intramolecular Cyclization under Mild Conditions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sota Kuroyanagi
- Yamagata University Graduate School of Organic Materials Science: Yamagata Daigaku Daigakuin Yuki Zairyo System Kenkyuka Department of Organic Materials Science JAPAN
| | - Shumpei Kikuchi
- Yamagata University: Yamagata Daigaku Department of Polymeric and Organic Materials Engineering JAPAN
| | - Shunsuke Sumikoshi
- Yamagata University Graduate School of Organic Materials Science: Yamagata Daigaku Daigakuin Yuki Zairyo System Kenkyuka Department of Organic Materials Science JAPAN
| | - Mizuho Uwano
- Yamagata University Graduate School of Organic Materials Science: Yamagata Daigaku Daigakuin Yuki Zairyo System Kenkyuka Department of Organic Materials Science JAPAN
| | - Takayuki Chiba
- Yamagata University Graduate School of Organic Materials Science: Yamagata Daigaku Daigakuin Yuki Zairyo System Kenkyuka Department of Organic Materials Science JAPAN
| | - Ryohei Yamakado
- Yamagata University Graduate School of Organic Materials Science: Yamagata Daigaku Daigakuin Yuki Zairyo System Kenkyuka Department of Organic Materials Science 4-3-16Jonan 992-8510 Yonezawa JAPAN
| | - Shuji Okada
- Yamagata University Graduate School of Organic Materials Science: Yamagata Daigaku Daigakuin Yuki Zairyo System Kenkyuka Department of Organic Materials Science JAPAN
| |
Collapse
|
6
|
Mal S, Malik U, Mahapatra M, Mishra A, Pal D, Paidesetty SK. A review on synthetic strategy, molecular pharmacology of indazole derivatives, and their future perspective. Drug Dev Res 2022; 83:1469-1504. [PMID: 35971890 DOI: 10.1002/ddr.21979] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/04/2022] [Accepted: 07/22/2022] [Indexed: 11/09/2022]
Abstract
With different nitrogen-containing heterocyclic moieties, Indazoles earn one of the places among the top investigated molecules in medicinal research. Indazole, an important fused aromatic heterocyclic system containing benzene and pyrazole ring with a chemical formula of C7 H6 N2 , is also called benzopyrazole. Indazoles consist of three tautomeric forms in which 1H-tautomers (indazoles) and 2H-tautomers (isoindazoles) exist in all phases. The tautomerism in indazoles greatly influences synthesis, reactivity, physical and even the biological properties of indazoles. The thermodynamic internal energy calculation of these tautomers points view 1H-indazole as the predominant and stable form over 2H-indazole. The natural source of indazole is limited and exists in alkaloidal nature (i.e., nigellidine, nigeglanine, nigellicine, etc.) found from Nigella plants. Some of the FDA-approved drugs like Axitinib, Entrectinib, Niraparib, Benzydamine, and Granisetron are being used to treat renal cell cancer, non-small cell lung cancer (NSCLC), epithelial ovarian cancer, chronic inflammation, chemotherapy-induced nausea, vomiting, and many more uses. Besides all these advantages regarding its biological activity, the main issue about indazoles is the less abundance in plant sources, and their synthetic derivatives also often face problems with low yield. In this review article, we discuss its chemistry, tautomerism along with their effects, different schematics for the synthesis of indazole derivatives, and their different biological activities.
Collapse
Affiliation(s)
- Suvadeep Mal
- Department of Pharmaceutical Chemistry, Siksha 'O' Anusandhan University (Deemed to be University), Bhubaneswar, Odisha, India
| | - Udita Malik
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Monalisa Mahapatra
- Department of Pharmaceutical Chemistry, Siksha 'O' Anusandhan University (Deemed to be University), Bhubaneswar, Odisha, India
| | | | - Dilipkumar Pal
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Sudhir K Paidesetty
- Department of Pharmaceutical Chemistry, Siksha 'O' Anusandhan University (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
7
|
Alkorta I, Claramunt RM, Elguero J, Gutiérrez-Puebla E, Monge MÁ, Reviriego F, Roussel C. Study of the Addition Mechanism of 1 H-Indazole and Its 4-, 5-, 6-, and 7-Nitro Derivatives to Formaldehyde in Aqueous Hydrochloric Acid Solutions. J Org Chem 2022; 87:5866-5881. [PMID: 35405072 PMCID: PMC9087356 DOI: 10.1021/acs.joc.2c00154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
The reaction of NH-indazoles with formaldehyde
in aqueous hydrochloric acid has been experimentally studied by solution
and solid-state nuclear magnetic resonance (NMR) and crystallography.
The mechanism of the formation of N1-CH2OH derivatives was determined. For the first time, 2-substituted
derivatives have been characterized by multinuclear NMR. Theoretically,
calculations with gauge-invariant atomic orbitals (GIAOs) at the Becke
three-parameter (exchange) Lee–Yang–Parr B3LYP/6-311++G(d,p)
level have provided a sound basis for the experimental observations.
The first X-ray structures of four (1H-indazol-1-yl)methanol
derivatives are reported.
Collapse
Affiliation(s)
- Ibon Alkorta
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006 Madrid, Spain
| | - Rosa M Claramunt
- Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, UNED, Senda del Rey 9, E-28040 Madrid, Spain
| | - José Elguero
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006 Madrid, Spain
| | - Enrique Gutiérrez-Puebla
- Departamento de Nuevas Arquitecturas en Química de Materiales, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz, 3, Cantoblanco, E-28049 Madrid, Spain
| | - M Ángeles Monge
- Departamento de Nuevas Arquitecturas en Química de Materiales, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz, 3, Cantoblanco, E-28049 Madrid, Spain
| | - Felipe Reviriego
- Instituto de Ciencia y Tecnología de Polímeros, CSIC, Juan de la Cierva, 3, E-28006 Madrid, Spain
| | - Christian Roussel
- Aix-Marseille Université, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| |
Collapse
|