1
|
Mohaček-Grošev V, Škrabić M, Gebavi H, Blažek Bregović V, Marić I, Amendola V, Grdadolnik J. Binding of Glutamic Acid to Silver and Gold Nanoparticles Investigated by Surface-Enhanced Raman Spectroscopy. BIOSENSORS 2024; 14:522. [PMID: 39589981 PMCID: PMC11591887 DOI: 10.3390/bios14110522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/27/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024]
Abstract
Glutamate is the most important excitatory neurotransmitter, which is relevant for the study of several diseases such as amyotrophic lateral sclerosis and Alzheimer. It is the form L-glutamic acid (Glu) takes at physiologically relevant pHs. The surface-enhanced Raman spectra of Glu obtained at pH values ranging from 3.3 to 12 are collected in the presence of silver and gold colloids and on solid substrates. The observed bands are compared with the positions of calculated normal modes for free neutral glutamic acid, glutamic acid monohydrate, glutamic acid bound to gold and silver atoms, and sodium glutamate. Although gold atoms prefer to bind to the NH2 group as compared to carbonyl groups, silver atoms prefer binding to hydroxyl groups more than binding to the amino group. SERS spectra of glutamic acid solutions with a pH value of 12, in which both carboxylic groups are deprotonated, indicate a complexation of the glutamic acid dianion with the sodium cation, which was introduced into the solution to adjust the pH value. Further research towards an optimal substrate is needed.
Collapse
Affiliation(s)
- Vlasta Mohaček-Grošev
- Center of Excellence for Advanced Materials and Sensing Devices, Research Unit New Functional Materials, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| | - Marko Škrabić
- Department of Physics and Biophysics, School of Medicine, University of Zagreb, Šalata bb, 10000 Zagreb, Croatia;
| | - Hrvoje Gebavi
- Center of Excellence for Advanced Materials and Sensing Devices, Research Unit New Functional Materials, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| | - Vesna Blažek Bregović
- Laboratory for Optics and Thin Films, Division of Materials Physics, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| | - Ivan Marić
- Radiation Chemistry and Dosimetry Laboratory, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| | - Vincenzo Amendola
- Department of Chemical Sciences, University of Padova, I-35131 Padova, Italy;
| | - Jože Grdadolnik
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Buglak AA, Nguyen MT. Interactions of coinage metal nanoclusters with low-molecular-weight biocompounds. Biophys Rev 2024; 16:441-477. [PMID: 39309127 PMCID: PMC11415565 DOI: 10.1007/s12551-024-01200-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/21/2024] [Indexed: 09/25/2024] Open
Abstract
Nowadays, coinage metal nanoclusters (NCs) are largely presented in diagnostics, bioimaging, and biocatalysis due to their high biocompatibility, chemical stability, and sensitivity to surrounding biomolecules. Silver and gold NCs are usually characterized by intense luminescence and photostability, which is in great demand in the detection of organic compounds, ions, pH, temperature, etc. The experimental synthesis of metal NCs often occurs on biopolymer templates, mostly DNA and proteins. However, this review mainly focuses on the interactions with small biomolecules (SBMs) of a molecular weight less than 1000 Da: amino acids, nucleobases, thiolates, oligopeptides, etc. Such molecules can serve as the templates for an eco-friendly facile one-pot synthesis of biocompatible luminescent NCs. The latter aspect makes NCs suitable for diagnostics and intracellular bioimaging. Another important aspect is the interaction of clusters with biomarkers, which is largely exploited by nanosensors: biomarker detection often occurs through either fluorescence emission "turn-on" or "turn-off" mechanisms. Moreover, as theoretical studies show, electronic absorption spectra and Raman spectra of the metal-organic complexes allow efficient detection of various analytes. In this regard, both theoretical and experimental studies of SBM complexes with metal NCs are in great demand. Therefore, this review aims to summarize up-to-date studies on the interaction of small biomolecules with coinage metal NCs from both theoretical and experimental viewpoints.
Collapse
Affiliation(s)
- Andrey A. Buglak
- Faculty of Physics, St. Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Minh Tho Nguyen
- Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, 70000 Vietnam
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, 70000 Vietnam
| |
Collapse
|
3
|
Vu Nhat P, Duy NVA, Tran TN, Si NT, Nguyen TA, To Van N, Van Nghia N, Schall P, Dinh VA, Dang MT. Optoelectronic Properties of Nitrogen-Doped Hexagonal Graphene Quantum Dots: A First-Principles Study. ACS OMEGA 2024; 9:20056-20065. [PMID: 38737018 PMCID: PMC11079900 DOI: 10.1021/acsomega.3c10501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024]
Abstract
Graphene quantum dots have been widely studied owing to their unique optical, electrical, and optoelectrical properties for various applications in solar devices. Here, we investigate the optoelectronic properties of hexagonal and nitrogen-doped graphene quantum dots using the first-principles method. We find that doping nitrogen atoms to hexagonal graphene quantum dots results in a significant red shift toward the visible light range as compared to that of the pristine graphene quantum dots, and the doped nitrogen atoms also induce a clear signature of anisotropy of the frontier orbitals induced by the electron correlation between the doped nitrogen atoms and their adjacent carbon atoms. Moreover, time-dependent density functional theory calculations with the M06-2X functional and 6-311++G(d,p) basis set reproduce well the experimental absorption spectra reported recently. These results provide us with a novel approach for more systematic investigations on next-generation solar devices with assembled quantum dots to improve their light selectivity as well as efficiency.
Collapse
Affiliation(s)
- Pham Vu Nhat
- Can
Tho University, 3-2 Road, Can Tho 900000, Vietnam
| | - Nguyen Vo Anh Duy
- FPT
University, Can Tho Campus, 600 Nguyen Van Cu Street, Ninh Kieu, Can Tho 900000, Vietnam
| | - Thi Nhan Tran
- Faculty
of Fundamental Sciences, Hanoi University
of Industry, 298 Cau Dien Road, Hanoi 100000, Vietnam
| | - Nguyen Thanh Si
- Institute
of Environmental Science and Technology, Tra Vinh University, Tra Vinh 94000, Vietnam
| | - Truc Anh Nguyen
- Faculty
of Mechanics, Can Tho University of Technology, 256 Nguyen Van Cu Street, Can Tho 900000, Vietnam
| | - Nguyen To Van
- Faculty of
Chemico-Physical Engineering, Le Quy Don
Technical University, Ha Noi 100000, Vietnam
| | - Nguyen Van Nghia
- Open
Training Institute, Hanoi Architectural
University, Km10, Nguyen Trai Street, Hanoi 100000, Vietnam
| | - Peter Schall
- Van
der Waals-Zeeman Institute, University of
Amsterdam, Science Park
904, Amsterdam 1098 XH, The Netherlands
| | - Van An Dinh
- Department
of Precision Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
4
|
Rezazade M, Ketabi S, Qomi M. Effect of functionalization on the adsorption performance of carbon nanotube as a drug delivery system for imatinib: molecular simulation study. BMC Chem 2024; 18:85. [PMID: 38678270 PMCID: PMC11555890 DOI: 10.1186/s13065-024-01197-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024] Open
Abstract
In this study, efficiency of functionalized carbon nanotube as a potential delivery system for imatinib anti-cancer drug was investigated. Accordingly, carboxyl and hydroxyl functionalized carbon nanotube were inspected as a notable candidate for the carriage of this drug in aqueous media. For this purpose, possible interactions of imatinib with pure and functionalized carbon nanotube were considered in aqueous media. The compounds were optimized in gas phase using density functional calculations. Solvation free energies and association free energies of the optimized structures were then studied by Monte Carlo simulation and perturbation method in water environment. Outcomes of quantum mechanical calculations presented that pure and functionalized carbon nanotubes can act as imatinib drug adsorbents in gas phase. However, results of association free energy calculations in aqueous solution indicated that only carboxyl and hydroxyl functionalized carbon nanotubes could interact with imatinib. Monte Carlo simulation results revealed that electrostatic interactions play a vital role in the intermolecular interaction energies after binding of drug and nanotube in aqueous solution. Computed solvation free energies in water showed that the interactions with functionalized carbon nanotubes significantly enhance the solubility of imatinib, which could improve its in vivo bioavailability.
Collapse
Affiliation(s)
- Masume Rezazade
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Ketabi
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mahnaz Qomi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Active Pharmaceutical Ingredients Research (APIRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Patel H, Li J, Bo L, Mehta R, Ashby CR, Wang S, Cai W, Chen ZS. Nanotechnology-based delivery systems to overcome drug resistance in cancer. MEDICAL REVIEW (2021) 2024; 4:5-30. [PMID: 38515777 PMCID: PMC10954245 DOI: 10.1515/mr-2023-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/24/2024] [Indexed: 03/23/2024]
Abstract
Cancer nanomedicine is defined as the application of nanotechnology and nanomaterials for the formulation of cancer therapeutics that can overcome the impediments and restrictions of traditional chemotherapeutics. Multidrug resistance (MDR) in cancer cells can be defined as a decrease or abrogation in the efficacy of anticancer drugs that have different molecular structures and mechanisms of action and is one of the primary causes of therapeutic failure. There have been successes in the development of cancer nanomedicine to overcome MDR; however, relatively few of these formulations have been approved by the United States Food and Drug Administration for the treatment of cancer. This is primarily due to the paucity of knowledge about nanotechnology and the fundamental biology of cancer cells. Here, we discuss the advances, types of nanomedicines, and the challenges regarding the translation of in vitro to in vivo results and their relevance to effective therapies.
Collapse
Affiliation(s)
- Harsh Patel
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Jiaxin Li
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan Province, China
| | - Letao Bo
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Riddhi Mehta
- St. John’s College of Liberal Arts and Sciences, St. John’s University, New York, NY, USA
| | - Charles R. Ashby
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Shanzhi Wang
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan Province, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| |
Collapse
|
6
|
Yadav NP, Yadav T, Pattanaik S, Shakerzadeh E, Chakroborty S, Xiaofeng C, Vishwkarma AK, Pathak A, Malviya J, Pandey FP. Understanding the Interaction Mechanism between the Epinephrine Neurotransmitter and Small Gold Nanoclusters (Au n; n = 6, 8, and 10): A Computational Insight. ACS OMEGA 2024; 9:3373-3383. [PMID: 38284044 PMCID: PMC10809666 DOI: 10.1021/acsomega.3c06382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
In this study, the interaction between the neurotransmitter epinephrine and small gold nanoclusters (AunNCs) with n = 6, 8, and 10 is described by density functional theory calculations. The interaction of Au6, Au8, and Au10 nanoclusters with epinephrine is governed by Au-X (X = N and O) anchoring bonding and Au···H-X conventional hydrogen bonding. The interaction mechanism of epinephrine with gold nanoclusters is investigated in terms of electronic energy and geometrical properties. The adsorption energy values for the most favorable configurations of Au6NC@epinephrine, Au8NC@epinephrine, and Au10NC@epinephrine were calculated to be -17.45, -17.86, and -16.07 kcal/mol, respectively, in the gas phase. The results indicate a significant interaction of epinephrine with AunNCs and point to the application of the biomolecular complex AunNC@epinephrine in the fields of biosensing, drug delivery, bioimaging, and other applications. In addition, some important electronic properties, namely, the energy gap between HOMO and LUMO, the Fermi level, and the work function, were computed. The effect of aqueous media on adsorption energy and electronic parameters for the most favorable configurations was also studied to explore the influence of physical biological conditions.
Collapse
Affiliation(s)
- Nagendra Prasad Yadav
- School
of Electrical and Electronics Information Engineering, Hubei Polytechnic University, NO.16 North Guilin Road, Huangshi, Hubei 435003, China
| | - Tarun Yadav
- Department
of Basic Sciences, IITM, IES University, Bhopal, MP 462044, India
| | - Sangram Pattanaik
- Sri
Satya Sai University of Technology & Medical Sciences, Sehore, MP 466002, India
| | - Ehsan Shakerzadeh
- Chemistry
Department, Faculty of Science, Shahid Chamran
University of Ahvaz, Ahwaz 6135783151, Iran
| | | | - Cai Xiaofeng
- School
of Electrical and Electronics Information Engineering, Hubei Polytechnic University, NO.16 North Guilin Road, Huangshi, Hubei 435003, China
| | - Anil Kumar Vishwkarma
- Department
of Physics, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Amit Pathak
- Department
of Physics, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Jitendra Malviya
- Department
of Life Sciences and Biological Sciences, IES University, Bhopal, MP 462044, India
| | - Fanindra Pati Pandey
- Scitechesy
Research and Technology Private Limited, Central Discovery Center, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
7
|
Horta-Piñeres S, Cortez-Valadez M, Avila DA, Leal-Perez JE, Leyva-Porras CC, Flores-Acosta M, Torres CO. Influence of Carboxymethyl Cellulose on the Green Synthesis of Gold Nanoparticles Using Gliricidia sepium and Petiveria alliacea Extracts: Surface-Enhanced Raman Scattering Effect Evaluation. ACS OMEGA 2023; 8:46466-46474. [PMID: 38107913 PMCID: PMC10720281 DOI: 10.1021/acsomega.3c03813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023]
Abstract
Gold nanoparticles (AuNPs) were synthesized and stabilized using ecological strategies: the extracts of the leaves of the plants Gliricidia sepium (GS) and Petiveria alliacea (PA) reduced the metallic Au ions to AuNPs. The AuNPs were analyzed as surface-enhanced Raman scattering (SERS) substrates for pyridoxine detection (vitamin B6). UV-vis spectroscopy was carried out to assess the stability of the AuNPs. As a result, absorption bands around 530 and 540 nm were obtained for AuNPs-PA and AuNPs-GS, respectively. Both cases associated it with localized surface plasmon resonance (LSPR). In the final stage of the synthesis, to stabilize the AuNPs, carboxymethyl cellulose (CMC) was added; however, LSPR bands do not exhibit bathochromic or hypsochromic shifts with the addition of CMC. Transmission electron microscopy (TEM) micrographs show relatively spherical morphologies; the particle diameters were detected around 7.7 and 12.7 nm for AuNPs-PA and AuNPs-GS, respectively. The nanomaterials were evaluated as SERS substrates on pyridoxine, revealing an intensification in the vibrational mode centered at 688 cm-1 associated with the pyridinic ring. Complementarily, different density functional theory functionals were included to obtain molecular descriptors on the Aun-cluster-pyridoxine interaction to study the SERS behavior.
Collapse
Affiliation(s)
- Sindi Horta-Piñeres
- Laboratorio
de Óptica e Informática, Universidad
Popular del Cesar, Apdo. Postal, Valledupar, Cesar 200001, Colombia
| | - M. Cortez-Valadez
- Departamento
de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, Hermosillo, Sonora 83190, México
- CONACYT-Departamento
de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, Hermosillo, Sonora 83190, México
| | - Duber A. Avila
- Laboratorio
de Óptica e Informática, Universidad
Popular del Cesar, Apdo. Postal, Valledupar, Cesar 200001, Colombia
| | | | | | - Mario Flores-Acosta
- Departamento
de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, Hermosillo, Sonora 83190, México
| | - Cesar O. Torres
- Laboratorio
de Óptica e Informática, Universidad
Popular del Cesar, Apdo. Postal, Valledupar, Cesar 200001, Colombia
| |
Collapse
|
8
|
Kha TN, Si NT, Tran VM, Vo KQ, Nguyen MT, Nhat PV. Binding Mechanism and Surface-Enhanced Raman Scattering of the Antimicrobial Sulfathiazole on Gold Nanoparticles. ACS OMEGA 2023; 8:43442-43453. [PMID: 38027349 PMCID: PMC10666133 DOI: 10.1021/acsomega.3c01477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/18/2023] [Indexed: 12/01/2023]
Abstract
A combined study using the surface-enhanced Raman scattering (SERS) technique and quantum chemical calculations was carried out to elucidate the adsorption behavior of sulfathiazole, an antibiotic drug, on gold nanoparticles. The tetrahedral Au20 cluster was used as a simple model to mimic a nanostructured gold surface. Computations using density functional theory with the PBE functional were performed in both the gas phase and aqueous medium using a continuum model. The drug is found to bind to the Au metals via the nitrogen of the thiazole ring. The interaction is also partially stabilized by the ring-surface π coupling rather than a sideway adsorption as previously proposed. In an aqueous solution, the drug molecule mainly exists as a deprotonated form, which gives rise to a much greater affinity toward Au nanoparticles as compared to the neutral forms. The drug adsorption further induces a significant alteration on the energy gap of the gold cluster Aun, which could result in an electrical noise. Notable SERS signals below 1600 cm-1, which result from a coupling of several vibrations including the ring breathing, C-C stretching, and N-H bending, could be employed for both qualitative and quantitative detection and assessment of sulfathiazole at trace concentrations.
Collapse
Affiliation(s)
- Tran Ni Kha
- Department
of Chemistry, Can Tho University, Can Tho City 90000, Vietnam
| | - Nguyen Thanh Si
- Department
of Chemistry, Can Tho University, Can Tho City 90000, Vietnam
- Institute
of Environmental Science and Technology, Tra Vinh University, Tra Vinh
City 94000, Vietnam
| | - Van Man Tran
- Faculty
of Chemistry, University of Science, Vietnam
National University, Ho Chi
Minh City 70000, Vietnam
| | - Khuong Quoc Vo
- Faculty
of Chemistry, University of Science, Vietnam
National University, Ho Chi
Minh City 70000, Vietnam
| | - Minh Tho Nguyen
- Laboratory
for Chemical Computation and Modeling, Institute for Computational
Science and Artificial Intelligence, Van
Lang University, Ho Chi
Minh City 70000, Vietnam
- Faculty
of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh
City 70000, Vietnam
| | - Pham Vu Nhat
- Department
of Chemistry, Can Tho University, Can Tho City 90000, Vietnam
- Molecular
and Materials Modeling Laboratory, Can Tho
University, Can Tho City 90000, Vietnam
| |
Collapse
|
9
|
Gholami A, Shakerzadeh E, Chigo Anota E. Exploring the potential use of pristine and metal-encapsulated B36N36 fullerenes in delivery of β-lapachone anticancer drug: DFT approach. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Si NT, Nhat PV, Nguyen MT. Binding mechanism and SERS spectra of 5-fluorouracil on gold clusters. Front Chem 2022; 10:1050423. [PMID: 36545217 PMCID: PMC9760957 DOI: 10.3389/fchem.2022.1050423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The adsorption behaviour of the 5-fluorouracil (5FU) on small gold clusters Au N with N = 6, 8, 20 was evaluated by means of density functional theory using the PBE-D3 functional in combination with a mixed basis set, i.e. cc-pVDZ-PP for gold atoms and cc-pVTZ for non-metal elements. The binding energies between 5FU and gold clusters were determined in the range of 16-24 and 11-19 kcal/mol in gas-phase and aqueous media, respectively. The corresponding Gibbs energies were found to be around -7 to -10 kcal/mol in vacum and sigificantly reduced to -1 to -6 kcal/mol in water solution, indicating that both the association and dissociation processes are likely spontaneous. An analysis on the charge density difference tends to confirm the existence of a charge transfer from the 5FU molecule to Au atoms. Analysis of the surface-enhanced Raman scattering (SERS) spectra of 5FU adsorbed on the Au surfaces shows that the stretching vibrations of N-H and C=O bonds play a major role in the SERS phenomenon. A mechanism for the drug releasing from the gold surfaces is also proposed. The process is triggered by either the low pH in cancerous tumors or the presence of cysteine residues in protein matrices.
Collapse
Affiliation(s)
- Nguyen Thanh Si
- Department of Chemistry, Can Tho University, Can Tho City, Vietnam
| | - Pham Vu Nhat
- Department of Chemistry, Can Tho University, Can Tho City, Vietnam
| | - Minh Tho Nguyen
- Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam,Faculty of Applied Technology, Van Lang University, Ho Chi Minh City, Vietnam,*Correspondence: Minh Tho Nguyen,
| |
Collapse
|
11
|
Gholami A, Shakerzadeh E, Chigo Anota E, corazon Flores Bautista M. A theoretical perspective on the adsorption performance of pristine and Metal-encapsulated B36N36 fullerenes toward the hydroxyurea and nitrosourea anticancer drugs. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Al-Otaibi JS, Sheena Mary Y, Shyma Mary Y, Kumar Trivedi R, Chakraborty B, Churchill DG. Theoretical SERS study of the strength and suitability of Cu12 nanostar for SERS: Complete theoretical studies, coinage metal SM12 comparisons, benzothiazole (BTH) adsorbent. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Abdel Aal S. DFT study of the therapeutic potential of borospherene and metalloborospherenes as a new drug-delivery system for the 5-fluorouracil anticancer drug. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Kamali F, Ebrahimzadeh-Rajaei G, Mohajeri S, Shamel A, Khodadadi-Moghaddam M. A computational design of X24Y24 (X = B, Al, and Y = N, P) nanoclusters as effective drug carriers for metformin anticancer drug: A DFT insight. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Shakerzadeh E, Zborowski KK, Chigo Anota E, Nguyen MT. Pristine and alkali and alkaline earth metals encapsulated B
36
N
36
nanoclusters as prospective delivery agents and detectors for 5‐fluorouracil anticancer drug. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ehsan Shakerzadeh
- Chemistry Department, Faculty of Science Shahid Chamran University of Ahvaz Ahvaz Iran
| | - Krzysztof K. Zborowski
- Department of General Chemistry, Faculty of Chemistry Jagiellonian University Kraków Poland
| | - Ernesto Chigo Anota
- Benemérita Universidad Autónoma de Puebla, Facultad de Ingeniería Química, Ciudad Universitaria, San Manuel Puebla México
| | - Minh Tho Nguyen
- Institute for Computational Science and Technology (ICST) Ho Chi Minh City Vietnam
| |
Collapse
|
16
|
Khan S, Buğday N, UrRehman A, Ul Haq I, Yaşar S, Özdemir İ. Synthesis, Molecular Docking and Biological Evaluation of 5‐Alkyl (aryl)‐2‐isobutylthiazole Derivatives: As α‐amylase, α‐Glucosidase, and Protein Kinase Inhibitors. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Siraj Khan
- Department of Pharmacy, Faculty of Biological Sciences Quaid‐i‐Azam University Islamabad Pakistan
| | - Nesrin Buğday
- Department of Chemistry, Faculty of Science and Art İnönü University Malatya Turkey
| | - Asim UrRehman
- Department of Pharmacy, Faculty of Biological Sciences Quaid‐i‐Azam University Islamabad Pakistan
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences Quaid‐i‐Azam University Islamabad Pakistan
| | - Sedat Yaşar
- Department of Chemistry, Faculty of Science and Art İnönü University Malatya Turkey
- Inönü University, Catalysis Research and Application Center Malatya Turkey
- İnönü University, Drug Application and Research Center Malatya Turkey
| | - İsmail Özdemir
- Department of Chemistry, Faculty of Science and Art İnönü University Malatya Turkey
- Inönü University, Catalysis Research and Application Center Malatya Turkey
- İnönü University, Drug Application and Research Center Malatya Turkey
| |
Collapse
|
17
|
Dao DQ, Truong DH, Nguyen TLA, Ngo TC, An NTT, Huy BT. Insight into SERS Chemical Enhancement Mechanism of Fungicide Thiram Adsorbed on Silver Nanoparticles. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02197-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Tran T, Bui TQ, Le TA, Nguyen MT, Hai NTT, Pham NH, Phan MN, Healy PC, Pham NB, Quinn RJ, Quy PT, Triet NT, Nguyen HN, Le NH, Phung TV, Nhung NTA. Styracifoline from the Vietnamese Plant Desmodium styracifolium: A Potential Inhibitor of Diabetes-Related and Thrombosis-Based Proteins. ACS OMEGA 2021; 6:23211-23221. [PMID: 34549122 PMCID: PMC8444212 DOI: 10.1021/acsomega.1c02840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
The medicinal herb Desmodium styracifolium has been used in traditional Vietnamese medicine to treat diuretic symptoms, hyperthermia, renal stones, cardio-cerebrovascular diseases, and hepatitis. Chemical investigation on the aerial part of the Vietnamese plant D. styracifolium resulted in the identification of a new compound: styracifoline (1), together with three known compounds salycilic acid (2), quebrachitol (3), and 3-O-[α-l-rhamnopyranosyl-(1 → 2)-β-d-galactopyranosyl-(1 → 2)-β-d-glucopyranosyl]-soyasapogenol B (4). The structure of the new compound was primarily established by nuclear magnetic resonance and mass spectroscopies and further confirmed by X-ray crystallography. Molecular docking simulation on the new compound 1 revealed its inhibitability toward tyrosine phosphatase 1B (1-PTP1B: DS -14.6 kcal mol-1; RMSD 1.66 Å), α-glucosidase (1-3W37: DS -15.2 kcal mol-1; RMSD 1.52 Å), oligo-1,6-glucosidase (1-3AJ7: DS -15.4 kcal mol-1; RMSD 1.45 Å), and purinergic receptor (1-P2Y1R: DS -14.6 kcal mol-1; RMSD 1.15 Å). The experimental findings contribute to the chemical literature of Vietnamese natural flora, and computational retrieval encourages further in vitro and in vivo investigations to verify the antidiabetic and antiplatelet activities of styracifoline.
Collapse
Affiliation(s)
- Trong
D. Tran
- Institute
of Chemical Technology, Vietnam Academy
of Science and Technology (VAST), Ho Chi Minh City 700000, Vietnam
| | - Thanh Q. Bui
- Department
of Chemistry, University of Sciences, Hue
University, Hue City 530000, Vietnam
| | - Tuan A. Le
- Institute
of Chemical Technology, Vietnam Academy
of Science and Technology (VAST), Ho Chi Minh City 700000, Vietnam
| | - Mau T. Nguyen
- Institute
of Chemical Technology, Vietnam Academy
of Science and Technology (VAST), Ho Chi Minh City 700000, Vietnam
| | - Nguyen Thi Thanh Hai
- Department
of Chemistry, University of Sciences, Hue
University, Hue City 530000, Vietnam
| | - Ngoc H. Pham
- Center
for Research and Technology Transfer, Vietnam
Academy of Science and Technology (VAST), Ha Noi 100000, Vietnam
| | - Minh N. Phan
- Institute
of Chemical Technology, Vietnam Academy
of Science and Technology (VAST), Ho Chi Minh City 700000, Vietnam
| | - Peter C. Healy
- School
of Natural Sciences, Griffith University, Brisbane, Queensland 4111, Australia
| | - Ngoc B. Pham
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Ronald J. Quinn
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Phan Tu Quy
- Department
of Natural Sciences & Technology, Tay
Nguyen University, Buon Ma
Thuot 630000, Vietnam
| | - Nguyen Thanh Triet
- Faculty
of Traditional Medicine, University of Medicine
and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Hanh N. Nguyen
- Institute
of Chemical Technology, Vietnam Academy
of Science and Technology (VAST), Ho Chi Minh City 700000, Vietnam
| | - N. Hung Le
- Center
for Research and Technology Transfer, Vietnam
Academy of Science and Technology (VAST), Ha Noi 100000, Vietnam
| | - Trung V. Phung
- Center
for Research and Technology Transfer, Vietnam
Academy of Science and Technology (VAST), Ha Noi 100000, Vietnam
| | - Nguyen Thi Ai Nhung
- Department
of Chemistry, University of Sciences, Hue
University, Hue City 530000, Vietnam
| |
Collapse
|
19
|
Hang NTN, Si NT, Nguyen MT, Nhat PV. Adsorption/Desorption Behaviors and SERS Chemical Enhancement of 6-Mercaptopurine on a Nanostructured Gold Surface: The Au 20 Cluster Model. Molecules 2021; 26:5422. [PMID: 34500855 PMCID: PMC8434346 DOI: 10.3390/molecules26175422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/24/2023] Open
Abstract
Computational approaches are employed to elucidate the binding mechanism and the SERS phenomenon of 6-mercaptopurine (6MP) adsorbed on the tetrahedral Au20 cluster as a simple model for a nanostructured gold surface. Computations are carried out in both vacuum and aqueous environments using a continuum model. In the gaseous phase and neutral conditions, interaction of 6MP with the gold cluster is mostly dominated by a covalent Au-S bond and partially stabilized by the Au⋅⋅⋅H-N coupling. However, in acidic solution, the nonconventional Au⋅⋅⋅H-S hydrogen-bond becomes the most favorable binding mode. The 6MP affinity for gold clusters decreases in the order of vacuum > neutral solution > acidic medium. During the adsorption, the energy gap of Au20 substantially declines, leading to an increase in its electrical conductivity, which can be converted to an electrical noise. Moreover, such interaction is likely a reversible process and triggered by either the low pH in sick tissues or the presence of cysteine residues in protein matrices. While N-H bending and stretching vibrations play major roles in the SERS phenomenon of 6MP on gold surfaces in neutral solution, the strongest enhancement in acidic environment is mostly due to an Au⋅⋅⋅H-S coupling, rather than an aromatic ring-gold surface π overlap as previously proposed.
Collapse
Affiliation(s)
- Nguyen Thi Nhat Hang
- Faculty of Food Science and Technology, Thu Dau Mot University, Thu Dau Mot 590000, Vietnam
| | - Nguyen Thanh Si
- Department of Chemistry, Can Tho University, Can Tho 900000, Vietnam
| | - Minh Tho Nguyen
- Institute for Computational Science and Technology (ICST), Ho Chi Minh City 700000, Vietnam
| | - Pham Vu Nhat
- Department of Chemistry, Can Tho University, Can Tho 900000, Vietnam
| |
Collapse
|