1
|
Myshko AS, Mrug GP, Bondarenko SP, Kondratyuk KM, Kobzar OL, Buldenko VM, Kozytskiy AV, Vovk AI, Frasinyuk MS. Trapping of thermally generated ortho- and para-quinone methides by imidazoles and pyrazoles: a simple route to green synthesis of benzopyrone-azole hybrids and their evaluation as α-glucosidase inhibitors. RSC Adv 2024; 14:27809-27815. [PMID: 39224630 PMCID: PMC11367390 DOI: 10.1039/d4ra05230g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
An efficient green approach for the trapping of in situ generated ortho-and para-quinone methide intermediates by imidazoles and pyrazoles has been developed. A wide range of quinone methide precursors based on simple phenols are compatible with the experimental protocol under mild thermal conditions. This methodology was demonstrated to be suitable for the synthesis of methylene-linked benzopyrone-azole hybrids using naturally occurring coumarin and chromone Mannich bases. In most cases, the products were isolated in good to excellent yields without chromatographic purification. In vitro studies showed that some of the synthesized compounds exhibit inhibitory activity towards α-glucosidase.
Collapse
Affiliation(s)
- Andrii S Myshko
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine 1 Academician Kukhar Str. Kyiv 02094 Ukraine
- Enamine Ltd. 78 Winston Churchill Str. Kyiv 02094 Ukraine
| | - Galyna P Mrug
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine 1 Academician Kukhar Str. Kyiv 02094 Ukraine
| | | | - Kostyantyn M Kondratyuk
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine 1 Academician Kukhar Str. Kyiv 02094 Ukraine
| | - Oleksandr L Kobzar
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine 1 Academician Kukhar Str. Kyiv 02094 Ukraine
| | - Vladyslav M Buldenko
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine 1 Academician Kukhar Str. Kyiv 02094 Ukraine
| | - Andriy V Kozytskiy
- Enamine Ltd. 78 Winston Churchill Str. Kyiv 02094 Ukraine
- ChemBioCenter, Taras Shevchenko National University of Kyiv 64 Volodymyrska Str. Kyiv 01601 Ukraine
| | - Andriy I Vovk
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine 1 Academician Kukhar Str. Kyiv 02094 Ukraine
| | - Mykhaylo S Frasinyuk
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine 1 Academician Kukhar Str. Kyiv 02094 Ukraine
- Enamine Ltd. 78 Winston Churchill Str. Kyiv 02094 Ukraine
| |
Collapse
|
2
|
Chen Y, Yan Y, Chen J, Zheng B, Jiang Y, Kang Z, Wu J. A Novel AHAS-Inhibiting Herbicide Candidate for Controlling Leptochloa chinensis: A Devastating Weedy Grass in Rice Fields. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16140-16151. [PMID: 39007211 DOI: 10.1021/acs.jafc.4c03891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Given the prevalence of the malignant weed Chinese Sprangletop (Leptochloa chinensis (L.) Nees) in rice fields, the development of novel herbicides against this weed has aroused wide interest. Here, we report a novel diphenyl ether-pyrimidine hybrid, DEP-5, serving as a systematic pre/postemergence herbicide candidate for broad-spectrum weed control in rice fields, specifically for L. chinensis. Notably, DEP-5 exhibits over 80% herbicidal activity against the resistant biotypes even at 37.5 g a.i./ha under greenhouse conditions and has complete control of L. chinensis at 150 g a.i./ha in the rice fields. We uncover that DEP-5 acts as a noncompetitive inhibitor of acetohydroxyacid synthase (AHAS) with an inhibition constant (Ki) of 39.4 μM. We propose that DEP-5 binds to AHAS in two hydrophobic-driven binding modes that differ from commercial AHAS inhibitors. Overall, these findings demonstrate that DEP-5 has great potential to be developed into a herbicide for L. chinensis control and inspire fresh concepts for novel AHAS-inhibiting herbicide design.
Collapse
Affiliation(s)
- Yinglu Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yitao Yan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jie Chen
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Ben Zheng
- Hangzhou Jingyinkang Biological Technology Co., Ltd., Hangzhou 311110, China
| | - Youwei Jiang
- Hangzhou Jingyinkang Biological Technology Co., Ltd., Hangzhou 311110, China
| | | | - Jun Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Yan Y, Chen Y, Hu H, Jiang Y, Kang Z, Wu J. Discovery of a New Class of Lipophilic Pyrimidine-Biphenyl Herbicides Using an Integrated Experimental-Computational Approach. Molecules 2024; 29:2409. [PMID: 38893290 PMCID: PMC11173721 DOI: 10.3390/molecules29112409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Herbicides are useful tools for managing weeds and promoting food production and sustainable agriculture. In this study, we report on the development of a novel class of lipophilic pyrimidine-biphenyl (PMB) herbicides. Firstly, three PMBs, Ia, IIa, and IIIa, were rationally designed via a scaffold hopping strategy and were determined to inhibit acetohydroxyacid synthase (AHAS). Computational simulation was carried out to investigate the molecular basis for the efficiency of PMBs against AHAS. With a rational binding mode, and the highest in vitro as well as in vivo potency, Ia was identified as a preferable hit. Furthermore, these integrated analyses guided the design of eighteen new PMBs, which were synthesized via a one-step Suzuki-Miyaura cross-coupling reaction. These new PMBs, Iba-ic, were more effective in post-emergence control of grass weeds compared with Ia. Interestingly, six of the PMBs displayed 98-100% inhibition in the control of grass weeds at 750 g ai/ha. Remarkably, Ica exhibited ≥ 80% control against grass weeds at 187.5 g ai/ha. Overall, our comprehensive and systematic investigation revealed that a structurally distinct class of lipophilic PMB herbicides, which pair excellent herbicidal activities with new interactions with AHAS, represent a noteworthy development in the pursuit of sustainable weed control solutions.
Collapse
Affiliation(s)
- Yitao Yan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yinglu Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hanxian Hu
- School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Youwei Jiang
- Hangzhou Jingyinkang Biological Technology Co., Ltd., Hangzhou 311110, China
| | | | - Jun Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
An J, Lan W, Fei Q, Li P, Wu W. Synthesis, Antifungal, and Antibacterial Activities of Novel Benzoylurea Derivatives Containing a Pyrimidine Moiety. Molecules 2023; 28:6498. [PMID: 37764273 PMCID: PMC10535663 DOI: 10.3390/molecules28186498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
To explore more efficient and less toxic antibacterial and antifungal pesticides, we utilized 2,6-difluorobenzamide as a starting material and ultimately synthesized 23 novel benzoylurea derivatives containing a pyrimidine moiety. Their structures were characterized and confirmed by 1H NMR, 13C NMR, 19F NMR, and HRMS. The bioassay results demonstrated that some of the title compounds exhibited moderate to good in vitro antifungal activities against Botrytis cinerea in cucumber, Botrytis cinerea in tobacco, Botrytis cinerea in blueberry, Phomopsis sp., and Rhizoctonia solani. Notably, compounds 4j and 4l displayed EC50 values of 6.72 and 5.21 μg/mL against Rhizoctonia solani, respectively, which were comparable to that of hymexazol (6.11 μg/mL). Meanwhile, at 200 and 100 concentrations, the target compounds 4a-4w exhibited lower in vitro antibacterial activities against Xanthomonas oryzae pv. oryzicola and Xanthomonas citri subsp. citri, respectively, compared to those of thiodiazole copper. Furthermore, the molecular docking simulation demonstrated that compound 4l formed hydrogen bonds with SER-17 and SER-39 of succinate dehydrogenase (SDH), providing a possible explanation for the mechanism of action between the target compounds and SDH. This study represents the first report on the antifungal and antibacterial activities of novel benzoylurea derivatives containing a pyrimidine moiety.
Collapse
Affiliation(s)
- Jiansong An
- School of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (J.A.); (W.L.); (Q.F.)
| | - Wenjun Lan
- School of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (J.A.); (W.L.); (Q.F.)
| | - Qiang Fei
- School of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (J.A.); (W.L.); (Q.F.)
| | - Pei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China
- Natural Products Research Center of Guizhou Province, Guiyang 550000, China
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine, Kaili University, Kaili 556011, China
| | - Wenneng Wu
- School of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (J.A.); (W.L.); (Q.F.)
| |
Collapse
|
5
|
Jena S, Choudhury B, Ahmad MG, Balamurali MM, Chanda K. Photophysical evaluation on the electronic properties of synthesized biologically significant pyrido fused imidazo[4,5-c]quinolines. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122081. [PMID: 36379086 DOI: 10.1016/j.saa.2022.122081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
A single pot microwave assisted method was employed to synthesize a series of novel pyrido fused imidazo[4,5-c]quinolines. The electronic properties of these derivatives were investigated by following their photophysical behaviour under isolated and solvated conditions via computational and experimental approaches. The solvatochromic effect of these derivatives was investigated in the ground and excited singlet states by following the absorption and fluorescence emission and excitation spectra. Further the effect of general and specific solvent effects were also investigated by plotting Stokes shift against Lippert-Mataga, ET(30) and Kamlet-Taft polarity parameters respectively. The deviation from linearity in ET(30) plot indicates that formation of different species in polar protic solvents. The biological applications of these derivatives as potential drug candidates were evaluated by in silico computational methods followed by pharmacokinetic properties predictions. The ability of these derivatives to inhibit human casein kinase 2 (CK2) was evaluated. The structure activity relationships were correlated by evaluating the electronic properties through experimental photophysical investigations including solvatochromic effect and computational electronic structure calculations. Of the various derivatives, p-nitro phenyl substituted pyrido fused imidazo[4,5-c]quinoline exhibited good inhibitory activity against CK2 enzyme and hence could serve as a promising drug candidate.
Collapse
Affiliation(s)
- Sushovan Jena
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Badruzzaman Choudhury
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Md Gulzar Ahmad
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - M M Balamurali
- Division of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Vandalur-Kelambakkam Road, Chennai 600 127, Tamil Nadu, India.
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|