1
|
Ozkan S, Petrov V, Vasilev A, Chernavskii P, Efimov M, Muratov D, Pankina G, Karpacheva G. Formation Features of Polymer-Metal-Carbon Ternary Electromagnetic Nanocomposites Based on Polyphenoxazine. Polymers (Basel) 2023; 15:2894. [PMID: 37447539 DOI: 10.3390/polym15132894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Novel ternary hybrid polyphenoxazine (PPOA)-derived nanocomposites involving Co-Fe particles and single-walled (SWCNTs) or multi-walled (MWCNTs) carbon nanotubes were prepared and investigated. An efficient one-pot method employing infrared (IR) heating enabled the formation of Co-Fe/CNT/PPOA nanocomposites. During this, the dehydrogenation of phenoxazine (POA) units led to the simultaneous reduction of metals by released hydrogen, yielding bimetallic Co-Fe particles with a size range from the nanoscale (5-30 nm) to the microscale (400-1400 nm). The synthesized Co-Fe/CNT/PPOA nanomaterials exhibited impressive thermal stability, demonstrating a half-weight loss at 640 °C and 563 °C in air for Co-Fe/SWCNT/PPOA and Co-Fe/MWCNT/PPOA, respectively. Although a slightly broader range of saturation magnetization values was obtained using MWCNTs, it was found that the type of carbon nanotube, whether an SWCNT (22.14-41.82 emu/g) or an MWCNT (20.93-44.33 emu/g), did not considerably affect the magnetic characteristics of the resulting nanomaterial. By contrast, saturation magnetization escalated with an increasing concentration of both cobalt and iron. These nanocomposites demonstrated a weak dependence of electrical conductivity on frequency. It is shown that the conductivity value for hybrid nanocomposites is higher compared to single-polymer materials and becomes higher with increasing CNT content.
Collapse
Affiliation(s)
- Sveta Ozkan
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, Moscow 119991, Russia
| | - Valeriy Petrov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, Moscow 119991, Russia
| | - Andrey Vasilev
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, Moscow 119991, Russia
| | - Petr Chernavskii
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, Moscow 119991, Russia
- Department of Chemistry Lomonosov, Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia
| | - Mikhail Efimov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, Moscow 119991, Russia
| | - Dmitriy Muratov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, Moscow 119991, Russia
| | - Galina Pankina
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, Moscow 119991, Russia
- Department of Chemistry Lomonosov, Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia
| | - Galina Karpacheva
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, Moscow 119991, Russia
| |
Collapse
|
2
|
Bouabdallaoui M, El Guerraf A, Aouzal Z, Bazzaoui M, Wang R, Bazzaoui EA. Extremely adherent and protective polymeric coating based on polydiphenylamine electrodeposited on steel in an organic electrolytic medium. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03215-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Ozkan SZ, Kostev AI, Chernavskii PA, Karpacheva GP. Novel Hybrid Nanomaterials Based on Poly- N-Phenylanthranilic Acid and Magnetic Nanoparticles with Enhanced Saturation Magnetization. Polymers (Basel) 2022; 14:2935. [PMID: 35890710 PMCID: PMC9320828 DOI: 10.3390/polym14142935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
A one-step preparation method for cobalt- and iron-containing nanomaterials based on poly-N-phenylanthranilic acid (P-N-PAA) and magnetic nanoparticles (MNP) was developed for the first time. To synthesize the MNP/P-N-PAA nanocomposites, the precursor is obtained by dissolving a Co (II) salt in a magnetic fluid based on Fe3O4/P-N-PAA with a core-shell structure. During IR heating of the precursor in an inert atmosphere at T = 700−800 °C, cobalt interacts with Fe3O4 reduction products, which results in the formation of a mixture of spherical Co-Fe, γ-Fe, β-Co and Fe3C nanoparticles of various sizes in the ranges of 20 < d < 50 nm and 120 < d < 400 nm. The phase composition of the MNP/P-N-PAA nanocomposites depends significantly on the cobalt concentration. The reduction of metals occurs due to the hydrogen released during the dehydrogenation of phenylenamine units of the polymer chain. The introduction of 10−30 wt% cobalt in the composition of nanocomposites leads to a significant increase in the saturation magnetization of MNP/P-N-PAA (MS = 81.58−149.67 emu/g) compared to neat Fe3O4/P-N-PAA (MS = 18.41−27.58 emu/g). The squareness constant of the hysteresis loop is κS = MR/MS = 0.040−0.209. The electrical conductivity of the MNP/P-N-PAA nanomaterials does not depend much on frequency and reaches 1.2 × 10−1 S/cm. In the argon flow at 1000 °C, the residue is 77−88%.
Collapse
Affiliation(s)
- Sveta Zhiraslanovna Ozkan
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia; (A.I.K.); (P.A.C.); (G.P.K.)
| | - Aleksandr Ivanovich Kostev
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia; (A.I.K.); (P.A.C.); (G.P.K.)
| | - Petr Aleksandrovich Chernavskii
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia; (A.I.K.); (P.A.C.); (G.P.K.)
- Department of Chemistry, Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russia
| | - Galina Petrovna Karpacheva
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia; (A.I.K.); (P.A.C.); (G.P.K.)
| |
Collapse
|
4
|
Lv S, Zhu Y, Wang X, Zhu Y, Wang K, Ni H, Gu R. Research on the Morphology Reconstruction of Deep Cryogenic Treatment on PtRu/nitrogen-Doped Graphene Composite Carbon Nanofibers. MATERIALS (BASEL, SWITZERLAND) 2022; 15:908. [PMID: 35160852 PMCID: PMC8838454 DOI: 10.3390/ma15030908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023]
Abstract
To improve the performance of PtRu/nitrogen-doped graphene composite carbon nanofibers, the composite carbon nanofibers were thermally compensated by deep cryogenic treatment (DCT), which realized the morphology reconstruction of composite carbon nanofibers. The effects of different DCT times were compared: 12 h, 18 h, and 24 h. The morphology reconstruction mechanism was explored by combining the change of inner chain structure and material group. The results showed that the fibers treated for 12 h had better physical and chemical properties, where the diameter is evenly distributed between 500 and 800 nm. Combined with Fourier infrared analysis, the longer the cryogenic time, the more easily the water vapor and nitrogen enter polymerization reaction, causing changes of chain structure and degradation performance. With great performance of carbonization and group transformation, the PtRu/nitrogen-doped graphene composite carbon nanofibers can be used as an efficient direct alcohol fuel cell catalyst and promote its commercialization.
Collapse
Affiliation(s)
- Shuaishuai Lv
- School of Mechanical Engineering, Nantong University, Nantong 226019, China; (S.L.); (X.W.); (Y.Z.); (K.W.)
| | - Yangyang Zhu
- Nantong Institute of Technology, Nantong 226019, China;
| | - Xingxing Wang
- School of Mechanical Engineering, Nantong University, Nantong 226019, China; (S.L.); (X.W.); (Y.Z.); (K.W.)
| | - Yu Zhu
- School of Mechanical Engineering, Nantong University, Nantong 226019, China; (S.L.); (X.W.); (Y.Z.); (K.W.)
| | - Kaixuan Wang
- School of Mechanical Engineering, Nantong University, Nantong 226019, China; (S.L.); (X.W.); (Y.Z.); (K.W.)
| | - Hongjun Ni
- School of Mechanical Engineering, Nantong University, Nantong 226019, China; (S.L.); (X.W.); (Y.Z.); (K.W.)
| | - Ruobo Gu
- Nantong Vocational College of Science & Technology, Nantong 226019, China;
| |
Collapse
|
5
|
Orlov AV, Kiseleva SG, Karpacheva GP, Muratov DG. Peculiarities of Oxidative Polymerization of Diarylaminodichlorobenzoquinones. Polymers (Basel) 2021; 13:3657. [PMID: 34771214 PMCID: PMC8587632 DOI: 10.3390/polym13213657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
New oxidative polymerization monomers-diarylaminodichlorobenzoquinones were synthesised by alkylating aniline, m-phenylenediamine and methanilic acid with chloranil. Oxidative polymerization of diarylaminodichlorobenzoquinones was studied for the first time in relation to the concentration of the monomer, acid, and oxidant/monomer ratio. It was found that the synthesized monomers are highly active in the polymerization reaction, and the oxidation rate grows with the increase in the acid concentration. Only one arylamine group is involved in the polymerization reaction. The optimal oxidant/monomer ratio is stoichiometric for one arylamine group, despite the bifunctionality of the monomers. It was shown that the type of the substituent in the aniline ring (electron donor or electron acceptor) determines the growth of the polymer chain and the structure of the resulting conjugated polymers. A mechanism for the formation of active polymerization centers for diarylaminodichlorobenzoquinones was proposed. FTIR-, NMR-, X-ray photoelectron spectroscopy, and SEM were used to identify the structure of the synthesized monomers and polymers. The obtained polymers have an amorphous structure and a loose globular morphology. The frequency dependence of the electrical conductivity was studied.
Collapse
Affiliation(s)
| | | | - Galina P. Karpacheva
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky pr., 29, 119991 Moscow, Russia; (A.V.O.); (S.G.K.); (D.G.M.)
| | | |
Collapse
|