1
|
Szalay M, Höltzl T. Development of a Master Equation-Based Microkinetic Model to Investigate Gas Phase Cluster Reactions Across a Wide Pressure and Temperature Range. Chemphyschem 2024:e202400465. [PMID: 39601305 DOI: 10.1002/cphc.202400465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/17/2024] [Indexed: 11/29/2024]
Abstract
Small gas-phase metal clusters serve as model systems for complex catalytic reactions, enabling the exploration of the impacts of the size, doping, charge state and other factors under clean conditions. Although the mechanisms of reactions involving metal clusters are known in many cases, they are not always sufficient to interpret the experimental results, as those can be strongly influenced by the chemical kinetics under specific conditions. Therefore, our objective here is to develop a model that utilizes quantum chemical computations to comprehend and predict the precise kinetics of gas-phase cluster reactions, particularly under low-pressure conditions. In this study, we demonstrate that master equation simulations, utilizing reaction paths computed through quantum chemistry, can effectively elucidate the findings of previous experiments. Furthermore, these simulations can accurately predict the kinetics spanning from low-pressure conditions (typically observed in gas-phase cluster experiments) to atmospheric or higher pressures (typical for catalytic experiments). The models are tested for simple elementary steps (Cu4+H2). We highlight the importance of the reaction mechanism simplification in Cu4 ++H2 and provide an interpretation for the previously observed product branching in Pt++CH4.
Collapse
Affiliation(s)
- Máté Szalay
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111, Budapest, Hungary
- Furukawa Electric Institute of Technology, Nanomaterials Science Group, Késmárk utca 28/A, H-1158, Budapest, Hungary
| | - Tibor Höltzl
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111, Budapest, Hungary
- HUN-REN-BME Computation Driven Research Group, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111, Budapest, Hungary
- Furukawa Electric Institute of Technology, Nanomaterials Science Group, Késmárk utca 28/A, H-1158, Budapest, Hungary
| |
Collapse
|
2
|
Ugartemendia A, Mercero JM, Jimenez-Izal E, de Cózar A. Doping Efects on Ethane/Ethylene Dehydrogenation Catalyzed by Pt 2X Nanoclusters. Chemphyschem 2024; 25:e202400095. [PMID: 38525872 DOI: 10.1002/cphc.202400095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 03/26/2024]
Abstract
The catalytic dehydrogenation of light alkanes is key to transform low-cost hydrocarbons to high value-added chemicals. Although Pt is extremely efficient at catalyzing this reaction, it suffers from coke formation that deactivates the catalyst. Dopants such as Sn are widely used to increase the stability and lifetime of Pt. In this work, the dehydrogenation reaction of ethane catalyzed by Pt3 and Pt2X (X=Si, Ge, Sn, P and Al) nanocatalysts has been studied computationally by means of density functional calculations. Our results show how the presence of dopants in the nanocluster structure affects its electronic properties and catalytic activity. Exploration of the potential energy surfaces show that non-doped catalyst Pt3 present low selectivity towards ethylene formation, where acetylene resulting from double dehydrogenation reaction will be obtained as a side product (in agreement with the experimental evidence). On the contrary, the inclusion of Si, Ge, Sn, P or Al as dopant agents implies a selectivity enhancement, where acetylene formation is not energetically favoured. These results demonstrate the effectiveness of such dopant elements for the design of Pt-based catalysts on ethane dehydrogenation.
Collapse
Affiliation(s)
- Andoni Ugartemendia
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), M. de Lardizabal Pasealekua 3, Donostia, Euskadi, Spain
| | - José M Mercero
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), M. de Lardizabal Pasealekua 3, Donostia, Euskadi, Spain
| | - Elisa Jimenez-Izal
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), M. de Lardizabal Pasealekua 3, Donostia, Euskadi, Spain
| | - Abel de Cózar
- Kimika Organikoa I Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), M. de Lardizabal Pasealekua 3, Donostia, Euskadi, Spain
- IKERBASQUE, Basque Foundation for Science, E-48009, Bilbao, Spain
| |
Collapse
|
3
|
Buglak AA, Kononov AI. Interactions of deprotonated phenylalanine with gold Clusters: Theoretical study with prospects for amino acid detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:124004. [PMID: 38341933 DOI: 10.1016/j.saa.2024.124004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Nanomaterials are widely used nowadays in industry and medicine. The specific properties of gold nanoclusters (Au NCs) are chemical stability, low cytotoxicity, low photobleaching, high sensitivity to the molecular environment. This set of properties allows to use Au NCs as nanosensors in bioimaging and diagnostics. We have investigated gold cluster complexes with proteinogenic amino acid phenylalanine (Phe). Detection of phenylalanine is essential for diagnostics of phenylketonuria, vitiligo, sclerosis, cancer, tuberculosis, etc. We have studied the complexes of Phe with Aunq clusters with atomic number equal 1-6, 8, 20 and a charge equal 0-2. We have established that the clusters Au40, Au21+ and Au32+ form the most stable complexes with Phe among NCs with charge 0, +1 and + 2, respectively. Intracomplex interactions have been studied using Atoms-In-Molecules (AIM) theory and Natural Bond Orbital (NBO) analysis. It has been shown that metal-ligand intracomplex interactions are partially covalent and partially electrostatic. Also, we have simulated the UV-vis absorption and Raman spectra of the Phe-Au NCs. We have established that the clusters possess prospective features if being used for colorimetric and Raman detection of Phe. Au20 cluster is remarkable for its six-times enhancement of the Raman signal. Moreover, our study provides insights into metal-ligand interactions for clusters synthesized inside a polypeptide globula. Hence, to the best of our knowledge this is a first attempt to perform a detailed analysis of Phe interactions with gold using quantum chemical calculations.
Collapse
Affiliation(s)
- Andrey A Buglak
- Saint-Petersburg State University, Faculty of Physics, Department of Molecular Biophysics and Polymer Physics 199034 St. Petersburg, Russia.
| | - Alexei I Kononov
- Saint-Petersburg State University, Faculty of Physics, Department of Molecular Biophysics and Polymer Physics 199034 St. Petersburg, Russia
| |
Collapse
|
4
|
Lushchikova OV, Szalay M, Tahmasbi H, Juurlink LBF, Meyer J, Höltzl T, Bakker JM. IR spectroscopic characterization of the co-adsorption of CO 2 and H 2 onto cationic Cu n+ clusters. Phys Chem Chem Phys 2021; 23:26661-26673. [PMID: 34709259 PMCID: PMC8653698 DOI: 10.1039/d1cp03119h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022]
Abstract
To understand elementary reaction steps in the hydrogenation of CO2 over copper-based catalysts, we experimentally study the adsorption of CO2 and H2 onto cationic Cun+ clusters. For this, we react Cun+ clusters formed by laser ablation with a mixture of H2 and CO2 in a flow tube-type reaction channel and characterize the products formed by IR multiple-photon dissociation spectroscopy employing the IR free-electron laser FELICE. We analyze the spectra by comparing them to literature spectra of Cun+ clusters reacted with H2 and with new spectra of Cun+ clusters reacted with CO2. The latter indicate that CO2 is physisorbed in an end-on configuration when reacted with the clusters alone. Although the spectra for the co-adsorption products evidence H2 dissociation, no signs for CO2 activation or reduction are observed. This lack of reactivity for CO2 is rationalized by density functional theory calculations, which indicate that CO2 dissociation is hindered by a large reaction barrier. CO2 reduction to formate should energetically be possible, but the lack of formate observation is attributed to kinetic hindering.
Collapse
Affiliation(s)
- Olga V Lushchikova
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - Máté Szalay
- MTA-BME Computation Driven Chemistry Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Muegyetem rkp. 3, Budapest 1111, Hungary
| | - Hossein Tahmasbi
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Ludo B F Juurlink
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jörg Meyer
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Tibor Höltzl
- MTA-BME Computation Driven Chemistry Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Muegyetem rkp. 3, Budapest 1111, Hungary
- Furukawa Electric Institute of Technology, Késmárk utca 28/A 1158, Budapest, Hungary
| | - Joost M Bakker
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Ferrari P, Delgado-Callico L, Lushchikova OV, Hou GL, Baletto F, Bakker JM, Janssens E. The size-dependent influence of palladium doping on the structures of cationic gold clusters. NANOSCALE ADVANCES 2021; 3:6197-6205. [PMID: 34765870 PMCID: PMC8548875 DOI: 10.1039/d1na00587a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
The physicochemical properties of small metal clusters strongly depend on their precise geometry. Determining such geometries, however, is challenging, particularly for clusters formed by multiple elements. In this work, we combine infrared multiple photon dissociation spectroscopy and density functional theory calculations to investigate the lowest-energy structures of Pd doped gold clusters, PdAu n-1 + (n ≤ 10). The high-quality experimental spectra allow for an unambiguous determination of the structures adopted by the clusters. Our results show that the Pd-Au interaction is so large that the structures of PdAu n-1 + and Au n + are very different. Pd doping induces a 2D to 3D transition at much smaller cluster sizes than for pure Au n + clusters. PdAu n-1 + clusters are three-dimensional from n = 4, whereas for Au n + this transition only takes place at n = 7. Despite the strong Au-Pd interaction, the Au n-1 + cluster geometries remain recognizable in PdAu n-1 + up to n = 7. This is particularly clear for PdAu6 +. In PdAu8 + and PdAu9 +, Pd triggers major rearrangements of the Au clusters, which adopt pyramidal shapes. For PdAu4 + we find a geometry that was not considered in previous studies, and the geometry found for PdAu8 + does not correspond to the lowest-energy structure predicted by DFT, suggesting kinetic trapping during formation. This work demonstrates that even with the continuous improvement of computational methods, unambiguous assignment of cluster geometries still requires a synergistic approach, combining experiment and computational modelling.
Collapse
Affiliation(s)
- Piero Ferrari
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven Leuven Belgium
| | | | - Olga V Lushchikova
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory Nijmegen The Netherlands
| | - Gao-Lei Hou
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven Leuven Belgium
| | | | - Joost M Bakker
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory Nijmegen The Netherlands
| | - Ewald Janssens
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven Leuven Belgium
| |
Collapse
|