1
|
Melchionna M, Moro M, Adorinni S, Nasi L, Colussi S, Poggini L, Marchesan S, Valenti G, Paolucci F, Prato M, Fornasiero P. Driving up the Electrocatalytic Performance for Carbon Dioxide Conversion through Interface Tuning in Graphene Oxide-Bismuth Oxide Nanocomposites. ACS APPLIED ENERGY MATERIALS 2022; 5:13356-13366. [PMID: 36465260 PMCID: PMC9710520 DOI: 10.1021/acsaem.2c02013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
The integration of graphene oxide (GO) into nanostructured Bi2O3 electrocatalysts for CO2 reduction (CO2RR) brings up remarkable improvements in terms of performance toward formic acid (HCOOH) production. The GO scaffold is able to facilitate electron transfers toward the active Bi2O3 phase, amending for the high metal oxide (MO) intrinsic electric resistance, resulting in activation of the CO2 with smaller overpotential. Herein, the structure of the GO-MO nanocomposite is tailored according to two synthetic protocols, giving rise to two different nanostructures, one featuring reduced GO (rGO) supporting Bi@Bi2O3 core-shell nanoparticles (NP) and the other GO supporting fully oxidized Bi2O3 NP. The two structures differentiate in terms of electrocatalytic behavior, suggesting the importance of constructing a suitable interface between the nanocarbon and the MO, as well as between MO and metal.
Collapse
Affiliation(s)
- Michele Melchionna
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste and Consortium INSTM, Via L. Giorgieri 1, 34127Trieste, Italy
| | - Miriam Moro
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna and Consortium INSTM, via Selmi 2, 40126Bologna, Italy
| | - Simone Adorinni
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste and Consortium INSTM, Via L. Giorgieri 1, 34127Trieste, Italy
| | - Lucia Nasi
- CNR-IMEM
Institute, Parco area delle Scienze 37/A, 43124Parma, Italy
| | - Sara Colussi
- Department
Politecnico, University of Udine, Unità
di Ricerca INSTM Udine, Via del Cotonificio 108, 33100Udine, Italy
| | - Lorenzo Poggini
- Institute
of Chemistry of Organometallic Compounds, National Research Council of Italy (ICCOM-CNR), Via Madonna del Piano 10, 50019Sesto Fiorentino, Florence, Italy
| | - Silvia Marchesan
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste and Consortium INSTM, Via L. Giorgieri 1, 34127Trieste, Italy
| | - Giovanni Valenti
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna and Consortium INSTM, via Selmi 2, 40126Bologna, Italy
| | - Francesco Paolucci
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna and Consortium INSTM, via Selmi 2, 40126Bologna, Italy
| | - Maurizio Prato
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste and Consortium INSTM, Via L. Giorgieri 1, 34127Trieste, Italy
- Carbon Nanobiotechnology
Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20009Donostia-San Sebastian, Spain
- Ikerbasque,
Basque Foundation for Science, 48013Bilbao, Spain
| | - Paolo Fornasiero
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste and Consortium INSTM, Via L. Giorgieri 1, 34127Trieste, Italy
- ICCOM-CNR,
University of Trieste, Via L. Giorgieri 1, 34127Trieste, Italy
| |
Collapse
|
2
|
Hmoudah M, El-Qanni A, Abuhatab S, Marei NN, El-Hamouz A, Tarboush BJA, Alsurakji IH, Baniowda HM, Russo V, Di Serio M. Competitive adsorption of Alizarin Red S and Bromocresol Green from aqueous solutions using brookite TiO 2 nanoparticles: experimental and molecular dynamics simulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77992-78008. [PMID: 35688985 DOI: 10.1007/s11356-022-21368-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
In this work, the effective adsorption and the subsequent photodegradation activity, of TiO2 brookite nanoparticles, for the removal of anionic dyes, namely, Alizarin Red S (ARS) and Bromocresol Green (BCG) were studied. Batch adsorption experiments were conducted to investigate the effect of both dyes' concentration, contact time, and temperature. Photodegradation experiments for the adsorbed dyes were achieved using ultraviolet light illumination (6 W, λ = 365 nm). The single adsorption isotherms were fitted to the Sips model. The binary adsorption isotherms were fitted using the Extended-Sips model. The results of adsorption isotherms showed that the estimated maximum adsorption uptakes in the binary system were around 140 mg g-1 and 45.5 mg g-1 for ARS and BCG, respectively. In terms of adsorption kinetics, the uptake toward ARS was faster than BCG molecules in which the equilibrium was obtained in 7 min for ARS, while it took 180 min for BCG. Moreover, the thermodynamics results showed that the adsorption process was spontaneous for both anionic dyes. All these macroscopic competitive adsorption results indicate high selectivity toward ARS molecules in the presence of BCG molecules. Additionally, the TiO2 nanoparticles were successfully regenerated using UV irradiation. Moreover, molecular dynamics computational modeling was performed to understand the molecules' optimum coordination, TiO2 geometry, adsorption selectivity, and binary solution adsorption energies. The simulation energies distribution exhibits lower adsorption energies for ARS in the range from - 628 to - 1046 [Formula: see text] for both single and binary systems. In addition to that, the water adsorption energy was found to be between - 42 and - 209 [Formula: see text].
Collapse
Affiliation(s)
- Maryam Hmoudah
- Department of Chemical Engineering, An-Najah National University, P.O. Box 7, Nablus, West Bank, Palestine
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Amjad El-Qanni
- Department of Chemical Engineering, An-Najah National University, P.O. Box 7, Nablus, West Bank, Palestine.
| | - Saqr Abuhatab
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | - Nedal N Marei
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | - Amer El-Hamouz
- Department of Chemical Engineering, An-Najah National University, P.O. Box 7, Nablus, West Bank, Palestine
| | - Belal J Abu Tarboush
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
| | - Ihab H Alsurakji
- Department of Mechanical Engineering, An-Najah National University, P.O. Box 7, Nablus, West Bank, Palestine
| | - Hanaa M Baniowda
- Department of Chemical Engineering, An-Najah National University, P.O. Box 7, Nablus, West Bank, Palestine
| | - Vincenzo Russo
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Martino Di Serio
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Li S, Hasan N, Ma H, Li OL, Lee B, Jia Y, Liu C. Significantly enhanced photocatalytic activity by surface acid corrosion treatment and Au nanoparticles decoration on the surface of SnFe2O4 nano-octahedron. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|