1
|
Komiyama M. Monomeric, Oligomeric, Polymeric, and Supramolecular Cyclodextrins as Catalysts for Green Chemistry. RESEARCH (WASHINGTON, D.C.) 2024; 7:0466. [PMID: 39253101 PMCID: PMC11381675 DOI: 10.34133/research.0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024]
Abstract
This review comprehensively covers recent developments of cyclodextrin-mediated chemical transformations for green chemistry. These cyclic oligomers of glucose are nontoxic, eco-friendly, and recyclable to accomplish eminent functions in water. Their most important feature is to form inclusion complexes with reactants, intermediates, and/or catalysts. As a result, their cavities serve as sterically restricted and apolar reaction fields to promote the efficiency and selectivity of reactions. Furthermore, unstable reagents and intermediates are protected from undesired side reactions. The scope of their applications has been further widened through covalent or noncovalent modifications. Combinations of them with metal catalysis are especially successful. In terms of these effects, various chemical reactions are achieved with high selectivity and yield so that valuable chemicals are synthesized from multiple components in one-pot reactions. Furthermore, cyclodextrin units are orderly assembled in oligomers and polymers to show their cooperation for advanced properties. Recently, cyclodextrin-based metal-organic frameworks and polyoxometalate-cyclodextrin frameworks have been fabricated and employed for unique applications. Cyclodextrins fulfill many requirements for green chemistry and should make enormous contributions to this growing field.
Collapse
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
2
|
Thepthanee C, Ei ZZ, Benjakul S, Zou H, Petsri K, Innets B, Chanvorachote P. Shrimp Lipids Inhibit Migration, Epithelial-Mesenchymal Transition, and Cancer Stem Cells via Akt/mTOR/c-Myc Pathway Suppression. Biomedicines 2024; 12:722. [PMID: 38672078 PMCID: PMC11048134 DOI: 10.3390/biomedicines12040722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Shrimp is a rich source of bioactive molecules that provide health benefits. However, the high cholesterol content in shrimp oil may pose a risk. We utilized the cholesterol elimination method to obtain cholesterol-free shrimp lipids (CLs) and investigated their anticancer potential, focusing on cancer stem cells (CSCs) and epithelial-to-mesenchymal transition (EMT). Our study focused on CSCs and EMT, as these factors are known to contribute to cancer metastasis. The results showed that treatment with CLs at doses ranging from 0 to 500 µg/mL significantly suppressed the cell migration ability of human lung cancer (H460 and H292) cells, indicating its potential to inhibit cancer metastasis. The CLs at such concentrations did not cause cytotoxicity to normal human keratinocytes. Additionally, CL treatment was found to significantly reduce the levels of Snail, Slug, and Vimentin, which are markers of EMT. Furthermore, we investigated the effect of CLs on CSC-like phenotypes and found that CLs could significantly suppress the formation of a three-dimensional (3D) tumor spheroid in lung cancer cells. Furthermore, CLs induced apoptosis in the CSC-rich population and significantly depleted the levels of CSC markers CD133, CD44, and Sox2. A mechanistic investigation demonstrated that exposing lung cancer cells to CLs downregulated the phosphorylation of Akt and mTOR, as well as c-Myc expression. Based on these findings, we believe that CLs may have beneficial effects on health as they potentially suppress EMT and CSCs, as well as the cancer-potentiating pathway of Akt/mTOR/c-Myc.
Collapse
Affiliation(s)
- Chorpaka Thepthanee
- Department of Food Science, School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Zin Zin Ei
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (Z.Z.E.); (B.I.)
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkhla University, Songkhla 90110, Thailand;
| | - Hongbin Zou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Korrakod Petsri
- Department of Pharmacology, Faculty of Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Bhurichaya Innets
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (Z.Z.E.); (B.I.)
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pithi Chanvorachote
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (Z.Z.E.); (B.I.)
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Raju N, Benjakul S. Process development of cholesterol removed Pacific white shrimp lipid enriched with astaxanthin using silica column. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Raju N, Gulzar S, Benjakul S. Cholesterol‐lowered shrimp lipid‐loaded liposome stabilised by pectin/glycerol and its fortification in peach tea drink. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Navaneethan Raju
- International Centre of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Saqib Gulzar
- International Centre of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Soottawat Benjakul
- International Centre of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| |
Collapse
|
5
|
Raju N, Gulzar S, Buamard N, Ma L, Ying X, Zhang B, Benjakul S. Comparative Study of Astaxanthin, Cholesterol, Fatty Acid Profiles, and Quality Indices Between Shrimp Oil Extracted From Hepatopancreas and Cephalothorax. Front Nutr 2021; 8:803664. [PMID: 34977134 PMCID: PMC8714899 DOI: 10.3389/fnut.2021.803664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Shrimp oil from two different portions of Pacific white shrimp including cephalothorax and hepatopancreas was extracted using the mixture of hexane/isopropanol (1:1). The extracted oils from the cephalothorax (CPO) and hepatopancreas (HPO) were characterized for astaxanthin content, cholesterol levels, and fatty acid profiles. Nutrition indices of CPO and HPO were also compared. CPO had lower extraction yield (3.2 ± 0.1%, wet weight basis) than HPO (11.1 ± 0.5%, wet weight basis). High-performance liquid chromatography results indicated that the astaxanthin content in HPO was higher, compared to that of CPO. Nevertheless, the cholesterol level in HPO was 70% lower than that of CPO. Fatty acid profiles of HPO and CPO demonstrated that the polyunsaturated fatty acid (PUFA) content in HPO was higher than that of CPO. The amount of docosahexaenoic acid in the former was ~2 times higher than that of the latter. HPO contained 42.76 ± 0.36% PUFA, whereas PUFA content of CPO was 35.27 ± 0.19%. On the other hand, saturated fatty acids (SFA) were more pronounced in CPO (38.44 ± 0.26%) than HPO (30.82 ± 0.55%). Based on nutrition indices, namely, atherogenicity index, thrombogenicity index, hypocholesterolemic/hypercholesterolemic (h/H) ratio, and PUFA/SFA ratio, HPO possessed higher health benefit than CPO. The oxidation status of CPO and HPO measured in terms of peroxide value, thiobarbituric acid reactive substances, anisidine value, and conjugated dienes indicated that higher primary oxidation products were present in CPO, whereas HPO exhibited more secondary oxidation compounds. Fourier transform infrared spectra further substantiated the presence of oxidation products in CPO and HPO. Liquid chromatography-mass spectrometry identification showed the enhanced levels of phospholipids and glycolipids in the ethanolic fraction of CPO. Overall, HPO with a higher yield was more beneficial in terms of health benefits than CPO.
Collapse
Affiliation(s)
- Navaneethan Raju
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Saqib Gulzar
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Natchaphol Buamard
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Lukai Ma
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiaoguo Ying
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Bin Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|