1
|
Wu L, Jiao L, Xue D, Li Y, Han Y, Ouyang W, Chen Q. Nanozyme and bifunctional nanobody-based colorimetric-SERS dual-mode Immunosensor for microcystin-LR detection. Food Chem 2025; 464:141574. [PMID: 39396471 DOI: 10.1016/j.foodchem.2024.141574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024]
Abstract
Microcystin-LR (MC-LR), a potent cyanotoxin in freshwater, poses a risk of severe liver damage and other health issues, making its detection vital. However, the detection capabilities of conventional antibodies are constrained, which limited their use in immunoassays. In this work, we designed a new bifunctional nanobody, named A2.3-SBP (comprised of nanobody and streptavidin binding peptide), capable of binding with MC-LR and streptavidin. Based on A2.3-SBP and Fe3O4@Au-Pt nanozyme, we introduced an enzyme-free immunosensor that operated in microplate with colorimetric and surface-enhanced Raman scattering (SERS) detection modes. The dual-mode assay showed color changes and SERS intensity directly correlating to MC-LR concentrations with a range from 1.0 to 500 ng/mL and a limit of detection of 0.26 and 0.032 ng/mL, respectively. This strategy eliminated the need for complex enzymatic reactions and realized dual-signal detection of MC-LR in 96 water samples (0.03 μg/kg) within 30 min, suggesting its potential in drinking water detection.
Collapse
Affiliation(s)
- Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety, State Administration for Market Regulation, Hainan University, Haikou 570228, PR China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China.
| | - Luyao Jiao
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety, State Administration for Market Regulation, Hainan University, Haikou 570228, PR China
| | - Danni Xue
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety, State Administration for Market Regulation, Hainan University, Haikou 570228, PR China
| | - Yueqing Li
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety, State Administration for Market Regulation, Hainan University, Haikou 570228, PR China
| | - Yu Han
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Sciences and Technology, Hubei Engineering University, Xiaogan 432000, PR China
| | - Wei Ouyang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Qi Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
2
|
Feng J, Dong L, Wang H, Xie Y, Wang H, Ding L, Song G, Zhang J, Li T, Shen Q, Zhang Y. Application of aptamer-conjugated graphene oxide for specific enrichment of microcystin-LR in Achatina fulica prior to matrix-assisted laser desorption ionization mass spectrometry. Electrophoresis 2024; 45:275-287. [PMID: 37768831 DOI: 10.1002/elps.202300107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
Microcystin-LR (MC-LR), as a hepatotoxin, can cause liver swelling, hepatitis, and even liver cancer. In this study, MC-LR aptamer (Apt-3) modified graphene oxide (GO) was designed to enrich MC-LR in white jade snail (Achatina fulica) and pond water, followed by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) analysis. Results indicated that the Apt-3/PEG/GO nanocomposites were highly specific to MC-LR, and the detection limit of MALDI-MS was 0.50 ng/mL. Moreover, the MC-LR can be released from nanocomposites at 75°C, thus, the reuse of Apt-3/PEG/GO is realized. Real sample analysis indicated that the Apt-3/PEG/GO nanocomposites coupled with MALDI-MS were efficient in detecting trace amounts of MC-LR in real samples. With the merits of being low cost, reusable, and easy to besynthesized, this Apt-3/PEG/GO MALDI-MS is expected to be comprehensively applied by anchoring suitable aptamers for different targets.
Collapse
Affiliation(s)
- Junli Feng
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Linpei Dong
- Institute of Forensic Science, Ministry of Public Security, Beijing, P. R. China
| | - Haixing Wang
- Key Laboratory of Drug Monitoring and Control of Zhejiang Province, National Anti-Drug Laboratory Zhejiang Regional Center, Hangzhou, P. R. China
| | - Yihong Xie
- Heart Center, Department of Cardiovascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, P. R. China
| | - Huizi Wang
- Heart Center, Department of Cardiovascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, P. R. China
| | - Lan Ding
- Heart Center, Department of Cardiovascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, P. R. China
| | - Gongshuai Song
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Jian Zhang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Ting Li
- Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Yunfeng Zhang
- Institute of Forensic Science, Ministry of Public Security, Beijing, P. R. China
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, P. R. China
| |
Collapse
|
3
|
Gao X, Feng W, Zhang J, Zhang H, Huo S. Synthesis of Cu 2+ doped biochar and its inactivation performance of Microcystis aeruginosa: Significance of synergetic effect. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122186. [PMID: 37442327 DOI: 10.1016/j.envpol.2023.122186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023]
Abstract
The harmful cyanobacteria bloom is frequently occurring in the aquatic environment and poses a tremendous threat to both aquatic organisms and ecological function. In this study, a series of Cu2+ doped biochar (BC) composites (Cu-BCs) with different loading ratios (0.1 %-5 wt %) (Cu-BC-0.1/0.5/1/2.5/5) was successfully fabricated through a one-step adsorption method for in-situ inactivation of Microcystis aeruginosa and simultaneous removal of microcystin-LR (MC-LR). Compared with the single BC/CuSO4 and other Cu-BCs composites, the Cu-BC-2.5 exhibited the best algae inactivation performance with the lowest 72 h medium effective concentration (EC50) value of 0.34 mg/L and highest chlorophyll α degradation efficiency of 8.31 g/g. Notably, the as-prepared Cu-BC-2.5 maintained good inactivation performance in the near-neutral pH (6.5-8.5), and the presence of humic acid and salts such as Na2CO3 and NaCl. The outstanding inhibitory effect of the Cu-BC-2.5 could be explained by the synergetic effect between biochar and Cu2+, which greatly elevated reactive oxygen species (ROS) intensity and in turn led to severe membrane damage and collapse of the antioxidant system. Additionally, the Cu-BC-2.5 could simultaneously remove the released microcystin-LR (MC-LR) throughout the inactivation process and prevent secondary pollution, thus offering a new insight into the alleviation of harmful cyanobacteria in aquatic environment.
Collapse
Affiliation(s)
- Xing Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, China; State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Weiying Feng
- School of Space and Environment, Beihang University, Beijing, 100191, China
| | - Jingtian Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, China
| | - Hanxiao Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, China
| | - Shouliang Huo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, China.
| |
Collapse
|
4
|
Wu P, Zhang M, Xue X, Ding P, Ye L. Dual-amplification system based on CRISPR-Cas12a and horseradish peroxidase-tethered magnetic microspheres for colorimetric detection of microcystin-LR. Mikrochim Acta 2023; 190:314. [PMID: 37474872 PMCID: PMC10359370 DOI: 10.1007/s00604-023-05887-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
A novel dual-amplification system based on CRISPR-Cas12a and horseradish peroxidase (HRP) was developed for colorimetric determination of MC-LR. This dual-amplification was accomplished by combining the nuclease activity of CRISPR-Cas12a with the redox activity of HRP. HRP linked to magnetic beads through an ssDNA (MB-ssDNA-HRP) was used to induce a color change of the 3,3',5,5'-tetramethylbenzidine (TMB)-H2O2 chromogenic substrate solution. Specific binding of MC-LR with its aptamer initiated the release of a complementary DNA (cDNA), which was designed to activate the trans-cleavage activity of CRISPR-Cas12a. Upon activation, Cas12a cut the ssDNA linker in MB-ssDNA-HRP, causing a reduction of HRP on the magnetic beads. Consequently, the UV-Vis absorbance of the HRP-catalyzed reaction was decreased. The dual-signal amplification facilitated by CRISPR-Cas12a and HRP enabled the colorimetric detection of MC-LR in the range 0.01 to 50 ng·mL-1 with a limit of detection (LOD) of 4.53 pg·mL-1. The practicability of the developed colorimetric method was demonstrated by detecting different levels of MC-LR in spiked real water samples. The recoveries ranged from 86.2 to 118.5% and the relative standard deviation (RSD) was 8.4 to 17.6%. This work provides new inspiration for the construction of effective signal amplification platforms and demonstrates a simple and user-friendly colorimetric method for determination of trace MC-LR.
Collapse
Affiliation(s)
- Pian Wu
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Man Zhang
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Xiaoting Xue
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden.
| |
Collapse
|
5
|
Shi G, Yan C, Chen J. Ultrasensitive Aptasensor for Microcystin-LR Detection in Food Samples Based on Target-Activated Assembly of Y-Shaped Hairpin Probes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16446-16452. [PMID: 36524375 DOI: 10.1021/acs.jafc.2c07661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As a kind of algal toxin, microcystin-LR (MC-LR) causes a tremendous treat to food safety and the detection of trace levels of MC-LR is highly desirable. Herein, we developed an ultrasensitive aptasensor for MC-LR detection based on target-activated assembly of Y-shaped hairpins. The aptamer-target recognition initiates the assembly step between two Y-shaped hairpin probes through toehold-mediated DNA replacement. One of the hairpins was modified with FAM and BHQ. Through cyclic assembly reactions, a high fluorescence signal can be observed in the product. The detection limit is 0.2 pM for MC-LR detection. In addition, the biosensor is robust and has been successfully explored to assess the MC-LR concentrations in real fish and water samples with satisfactory recovery rates and good accuracy. The signal amplification can be gained through the cyclic Y-shaped hairpin assembly, which offers a simple, ultrasensitive, and reliable method for MC-LR monitoring in food samples.
Collapse
Affiliation(s)
- Gu Shi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chong Yan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
6
|
Li B, Liu Y, Liu Y, Xie P. Excluding interference and detecting Microcystin-LR in the natural lakes and cells based a unique fluorescence method. WATER RESEARCH 2022; 221:118811. [PMID: 35810636 DOI: 10.1016/j.watres.2022.118811] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria blooms that cause the death of aquatic and terrestrial organisms have attracted considerable attention since the 19th century. The most typical toxin in cyanobacteria blooms is cyanobacteria toxin, particularly microcystin-LR (MC-LR). Therefore, a simple and highly efficient method for detecting MC-LR plays a role in studying the ecological toxicology of MC-LR. However, as MC-LR itself is located in a complex environment, traditional techniques present complex and false-positive defects. To address the above issues, novel technologies should be explored and discovered. Herein, we describe the development of MC-BDKZ as the first paradigm of probes that can concurrently report MC-LR in natural lakes and cells. This novel material shows large Stokes Shift and possesses good photostability and high sensitivity. Considering the properties mentioned above, MC-BDKZ not only achieves the detection of MC-LR in the lake water samples, but also completes the imaging of exogenous MC-LR in cells. Moreover, the interference of many factors in the lake and cells is excluded completely in the process of MC-LR detection. We comprehensively analyzed the response principle and potential application of MC-BDKZ in the process of MC-LR detection. Compared with the conventional MC-LR detection technologies, fluorescence probe technology shows better convenience and greatly reduces distance from the practical application in vitro and in vivo. We envisioned that the development of this visual research tool could provide crucial clues for exploring the pathogenesis of MC-LR in body.
Collapse
Affiliation(s)
- Bingyan Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Yipeng Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Yong Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China.
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
7
|
Yuan R, Liu Q, Hong H, Ma H, Xiao L, Li Y, Jiang D, Hao N, Wang K. Enhanced cathodic electrochemiluminescent microcystin-LR aptasensor based on surface plasmon resonance of Bi nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128877. [PMID: 35427978 DOI: 10.1016/j.jhazmat.2022.128877] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Sensitive testing for Microcystins-LR (MC-LR) is needed because of its serious environmental and human health hazards. In this work, a new type of surface plasmon resonance (SPR) enhanced cathodic electrochemiluminescence (ECL) aptasensing platform was designed in which boron and nitrogen co-doped graphene quantum dots (BN-GQDs) were used as the luminary and bismuth nanoparticles (Bi NPs) were used as the SPR source. SPR effect of non-precious metal Bi NPs can induce and enhance ECL signal of BN-GQDs because the fluorescence spectrum of BN-GQDs overlaps well with the ultraviolet-visible absorption spectrum of Bi NPs. On this basis, a sensitive sensing system based on the Bi NPs and BN-GQDs was established for MC-LR detection. The results showed that the ECL sensing signal obtained was linear with the negative logarithm of the target MC-LR concentration in the range of 0.01-5000 pM, and the detection limit was 0.003 pM. In addition, the sensor had high stability and good reproducibility, which can be applied to the detection of MC-LR in actual samples. The method had good specificity and can not be disturbed by its homolog, which can be used for sensitive and reliable detection of complex samples.
Collapse
Affiliation(s)
- Ruishuang Yuan
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Honghong Hong
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Hanyu Ma
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Liting Xiao
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yaqi Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China; Advanced Technology Institute of Suzhou, 215123 Jiangsu, PR China
| | - Ding Jiang
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Nan Hao
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kun Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
8
|
Possibility for Water Quality Biocontrol: Observation of Microcystin Transfer in the “Cyanobacteria–Cladohorn–Fish” Food Chain. WATER 2022. [DOI: 10.3390/w14121928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Microcystins appear to be considered one of the most dangerous cyanobacterial toxins in the world. The accumulation and change of microcystins MC-LR and MC-RR in the “cyanobacteria–cladocera–fish” food chain were studied. Microcystis aeruginosa was fed to Moina macrocopa at three densities, 5.0 × 103, 5.0 × 105, and 5.0 × 106 cells/mL, and then passed to Cyprinus flammans. The total amount of MCs in the cyanobacteria cell extract increased with increasing density. The content of MCs in M. macrocopa increased with the feeding density of M. aeruginosa. In the final stage of experiments, MC-RR was the only MC that could be transmitted by M. macrocopa and persisted in red carp. In this study, changes in the concentrations of MC-LR and MC-RR in the liver of red carp seem to indicate some kind of transformation or degradation mechanism. It shows the possibility of MCs concentration-controlled biodefense in eutrophic waters.
Collapse
|
9
|
Kang Y, Su G, Yu Y, Cao J, Wang J, Yan B. CRISPR-Cas12a-Based Aptasensor for On-Site and Highly Sensitive Detection of Microcystin-LR in Freshwater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4101-4110. [PMID: 35263090 DOI: 10.1021/acs.est.1c06733] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
On-site monitoring of trace organic pollutants with facile methods is critical to environmental pollutant prevention and control. Herein, we proposed a CRISPR-Cas12a-based aptasensor platform (named as MC-LR-Casor) for on-site and sensitive detection of microcystin-LR (MC-LR). After hybridization with blocker DNA, the MC-LR aptamers were conjugated to magnetic beads (MBs) to get the MB aptasensor. In the presence of MC-LR, their interactions with aptamers were triggered and the specific binding caused the release of blocker DNA. Using the programmability of the CRISPR-Cas system, the released blocker DNA was designed to activate a Cas12a-crRNA complex. Single strand DNA reporters were rapidly cleaved by the complex. Signal readout could be achieved by fluorometer or lateral flow strips, which were positively correlated to MC-LR concentration. Benefiting from the CRISPR-Cas12a amplification system, the proposed sensing platform exhibited high sensitivity and reached the limit of detection of ∼3 × 10-6 μg/L (fluorescence method) or 1 × 10-3 μg/L (lateral flow assay). In addition, the MC-LR-Casor showed excellent selectivity and good recovery rates, demonstrating their good applicability for real water sample analysis. During the whole assay, only two steps of incubation at a constant temperature were required and the results could be visualized when employing flow strips. Therefore, the proposed assay offered a simple and convenient alternative for in situ MC-LR monitoring, which may hold great promise for future environmental surveillance.
Collapse
Affiliation(s)
- Yuliang Kang
- School of Pharmacy, Nantong University, Nantong 226001, China
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yanyan Yu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jiajia Cao
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jiali Wang
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
10
|
Bai R, Sun H, Jin P, Li J, Peng A, He J. Facile synthesis of carbon nitride quantum dots as a highly selective and sensitive fluorescent sensor for the tetracycline detection. RSC Adv 2021; 11:24892-24899. [PMID: 35481027 PMCID: PMC9036896 DOI: 10.1039/d1ra04272f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Enhanced blue fluorescent carbon nitride quantum dots (g-C3N4QDs) were synthesized by a simple solvothermal “tailoring” process from bulk g-C3N4 and analyzed by various characterization methods. The as-obtained g-C3N4QDs were successfully applied in the determination of tetracycline (TC) with a good linear relationship in the range of 0.23–202.70 μM. The proposed fluorescent sensor shows excellent stability, good repeatability, high selectivity and outstanding sensitivity to TC with a low detection limit of 0.19 μM. The fluorescence quenching mechanism of g-C3N4QDs with TC was mainly governed by static quenching and the inner filter effect. The method was successfully applied to monitor TC in tap water and milk powder samples. The g-C3N4QDs were synthesized by a simple solvothermal “tailoring” process from bulk g-C3N4 which have a “strong quenching” behaviour in the presence of TC. The proposed fluorescent sensor has been successfully applied to detect TC in actual samples.![]()
Collapse
Affiliation(s)
- Ruining Bai
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| | - Heli Sun
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| | - Peng Jin
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| | - Jingwei Li
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| | - Anzhong Peng
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| | - Jieli He
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| |
Collapse
|