1
|
Singh AK, Antonenko A, Kocyła A, Krężel A. An efficient and easily obtainable butelase variant for chemoenzymatic ligation and modification of peptides and proteins. Microb Cell Fact 2024; 23:325. [PMID: 39614317 DOI: 10.1186/s12934-024-02598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024] Open
Abstract
The expanding field of site-specific ligation of proteins and peptides has catalyzed the development of novel methods that enhance molecular modification. Among these methods, enzymatic strategies have emerged as dominant due to their specificity and efficiency in modifying proteins under mild conditions. Asparaginyl endopeptidase is a group of cyclotide-producing cysteine proteases from plants. These plant cysteine proteases, known for their specificity, effectively recognize the tripeptide motif (Asx-Xaa-Yaa) and cleave at the C-terminal side of Asx residues, forming acyl-enzyme intermediates that facilitate transpeptidation. Butelase 1 stands out as the most efficient AEP for protein engineering, yet challenges in its expression and purification limit its accessibility for widespread research and industrial use. To address these challenges, we engineered a new, catalytically efficient variant of Butelase 1, Butelase AY, by mutating the gatekeeping residues Val237Ala and Thr238Tyr within the LAD-1 region. These modifications significantly enhanced the stability and yield of Butelase AY, allowing for successful application in various peptide and protein engineering tasks. Butelase AY was tested on the peptide GLGKY, the globular protein GFP, and the intrinsically disordered protein α-synuclein, effectively labeling them with a fluorescent probe. Notably, Butelase AY maintained its efficiency with substrates containing unnatural amino acids, making it a promising candidate for biorthogonal applications. Importantly, the mutations did not compromise the enzyme's specificity, as it continued to process model peptides and native protein substrates with N-term NHV recognition motifs effectively. In conclusion, Butelase AY presents a novel recombinant tool for diverse protein labeling and modifications, particularly in biorthogonal strategies. This innovation has the potential to expand applications in biotechnology and therapeutic development, ultimately revolutionizing protein engineering and its utility in synthetic biology.
Collapse
Affiliation(s)
- Avinash Kumar Singh
- Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wrocław, 50-383, Poland.
| | - Anastasiia Antonenko
- Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wrocław, 50-383, Poland
| | - Anna Kocyła
- Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wrocław, 50-383, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wrocław, 50-383, Poland.
| |
Collapse
|
2
|
Tang TMS, Luk LYP. Towards controlling activity of a peptide asparaginyl ligase (PAL) by lumazine synthetase compartmentalization. Faraday Discuss 2024; 252:403-421. [PMID: 38832470 PMCID: PMC11476191 DOI: 10.1039/d4fd00002a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/16/2024] [Indexed: 06/05/2024]
Abstract
Peptide asparaginyl ligases (PALs) hold significant potential in protein bioconjugation due to their excellent kinetic properties and broad substrate compatibility. However, realizing their full potential in biocatalytic applications requires precise control of their activity. Inspired by nature, we aimed to compartmentalize a representative PAL, OaAEP1-C247A, within protein containers to create artificial organelles with substrate sorting capability. Two encapsulation approaches were explored using engineered lumazine synthases (AaLS). The initial strategy involved tagging the PAL with a super-positively charged GFP(+36) for encapsulation into the super-negatively charged AaLS-13 variant, but it resulted in undesired truncation of the enzyme. The second approach involved genetic fusion of the OaAEP1-C247A with a circularly permutated AaLS variant (cpAaLS) and its co-production with AaLS-13, which successfully enabled compartmentalization of the PAL within a patch-work protein cage. Although the caged PAL retained its activity, it was significantly reduced compared to the free enzyme (∼30-40-fold), likely caused by issues related to OaAEP1-C247A stability and folding. Nevertheless, these findings demonstrated the feasibility of the AaLS encapsulation approach and encourage further optimization in the design of peptide-ligating artificial organelles in E. coli, aiming for a more effective and stable system for protein modifications.
Collapse
Affiliation(s)
- T M Simon Tang
- School of Chemistry & Cardiff Catalysis Institute, Cardiff University, Main Building, Room 1.54, Park Place, Cardiff, CF10 3AT, UK.
| | - Louis Y P Luk
- School of Chemistry & Cardiff Catalysis Institute, Cardiff University, Main Building, Room 1.54, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
3
|
Zhao J, Song W, Huang Z, Yuan X, Huang Y, Hou Y, Liu K, Jin P, Hu SQ. "Top-down" overexpression optimization of butelase-1 in Escherichia coli and its application in anti-tumor peptides. Int J Biol Macromol 2024; 276:133933. [PMID: 39025194 DOI: 10.1016/j.ijbiomac.2024.133933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Butelase-1, the fastest known Asn/Asp-specific peptide ligase capable of catalyzing peptide ligation and cyclization, holds promising application prospects in the fields of food and biology. However, limited research exists on its recombinant expression and potential applications in peptide drugs. In this study, the activity of recombinantly-produced butelase-1 was enhanced by co-expressing it with a molecular chaperone in the SHuffle T7 strain. By introducing single or multiple synonymous rare codons at the beginning of the coding regions of beta-strand or alpha-helix, in combination with ribosomal binding site engineering, the activity of butelase-1 could be further improved. Consequently, the butelase-1 with a specific activity of 386.93 U/mg and a catalytic efficiency of 11,048 M-1 s-1 was successfully prepared in E. coli, resulting in a total activity of 8183.54 U/L and a yield of about 100 mg/L. This optimized butelase-1 was then used to efficiently cyclize the redesigned anti-cancer peptide lunasin, leading to enhanced bioavailability and anti-cancer effects. Overall, this study not only provided valuable biotechnology strategies for improving the recombinant expression of butelase-1 but also demonstrated a successful application for enhancing the biological efficacy of anti-cancer peptides.
Collapse
Affiliation(s)
- Jinsong Zhao
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; College of Agricultural and Food Sciences, Zhejiang A & F University, Hangzhou 311300, China
| | - Wen Song
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhiqiang Huang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xin Yuan
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yanbo Huang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Kun Liu
- Experimental Education/Administration Center, National Demonstration Center for Experimental Education of Basic Medical Sciences, Key Laboratory of Functional Proteomics of Guangdong Province, Department of Cell Biology, School of Basic Medical Sciences Southern Medical University, Guangzhou 510515, China
| | - Peng Jin
- College of Agricultural and Food Sciences, Zhejiang A & F University, Hangzhou 311300, China
| | - Song-Qing Hu
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
4
|
Wang XB, Zhang CH, Zhang T, Li HZ, Liu YL, Xu ZG, Lei G, Cai CJ, Guo ZY. An efficient peptide ligase engineered from a bamboo asparaginyl endopeptidase. FEBS J 2024; 291:2918-2936. [PMID: 38525648 DOI: 10.1111/febs.17111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/26/2024]
Abstract
In recent years, a few asparaginyl endopeptidases (AEPs) from certain higher plants have been identified as efficient peptide ligases with wide applications in protein labeling and cyclic peptide synthesis. Recently, we developed a NanoLuc Binary Technology (NanoBiT)-based peptide ligase activity assay to identify more AEP-type peptide ligases. Herein, we screened 61 bamboo species from 16 genera using this assay and detected AEP-type peptide ligase activity in the crude extract of all tested bamboo leaves. From a popular bamboo species, Bambusa multiplex, we identified a full-length AEP-type peptide ligase candidate (BmAEP1) via transcriptomic sequencing. After its zymogen was overexpressed in Escherichia coli and self-activated in vitro, BmAEP1 displayed high peptide ligase activity, but with considerable hydrolytic activity. After site-directed mutagenesis of its ligase activity determinants, the mutant zymogen of [G238V]BmAEP1 was normally overexpressed in E. coli, but failed to activate itself. To resolve this problem, we developed a novel protease-assisted activation approach in which trypsin was used to cleave the mutant zymogen and was then conveniently removed via ion-exchange chromatography. After the noncovalently bound cap domain was dissociated from the catalytic core domain under acidic conditions, the recombinant [G238V]BmAEP1 displayed high peptide ligase activity with much lower hydrolytic activity and could efficiently catalyze inter-molecular protein ligation and intramolecular peptide cyclization. Thus, the engineered bamboo-derived peptide ligase represents a novel tool for protein labeling and cyclic peptide synthesis.
Collapse
Affiliation(s)
- Xin-Bo Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cong-Hui Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Teng Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hao-Zheng Li
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ya-Li Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Gang Lei
- Sanya Research Base of International Centre for Bamboo and Rattan, China
| | - Chun-Ju Cai
- Sanya Research Base of International Centre for Bamboo and Rattan, China
- International Center for Bamboo and Rattan, State Forestry and Grassland Administration Key Laboratory of Bamboo and Rattan, Beijing, China
| | - Zhan-Yun Guo
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Abstract
A variant originated from Oldenlandia affinis asparaginyl ligase, OaAEP1-C247A, has emerged as an ideal tool for protein labeling. However, its preparation was laborious and time-consuming. It is recombinantly produced as a zymogen, requiring acid activation and four chromatographic steps; despite these extensive steps, the catalytically active enzyme exhibited only moderate purity. Here, we report a novel preparation protocol, in which the cap and catalytically active core domains are produced as separate entities. The active enzyme can be obtained in two chromatographic steps, immobilized metal affinity chromatography (IMAC) and size exclusion chromatography (SEC), with no acid activation required, thereby shortening the purification procedure from at least 2 days to less than 6 h. In addition to the original C247A mutation which enhanced reaction with various amino nucleophiles, an extra D29E mutation was introduced to prevent self-cleavage, which led to noticeable improvements in homogeneity and activity of the enzyme. Indeed, the resulting "split AEP" (i.e., core domain of OaAEP1-D29E/C247A) exhibited improved catalytic efficiency constant (kcat/KM) that was found to be ∼3-fold higher than that of the original acid-activated counterpart (OaAEP1-C247A). Furthermore, we described a protein labeling protocol that couples the enzymatic reaction with an irreversible chemical transformation, thereby enabling high conversion of labeled protein with a lowered amount of reagent. Precisely, an alternative Asn-Cys-Leu (NCL) recognition sequence was used for substrate recognition. As the byproduct contains an N-terminal cysteine, it can be transformed into an inert 1,2 aminothiol motif by reacting with formylphenyl boronic acid (FPBA). Finally, the opportunities and challenges associated with the use of asparaginyl ligase are discussed.
Collapse
Affiliation(s)
- Muge Ma
- School of Chemistry, Cardiff University, Park Place, Cardiff, United Kingdom
| | - Simon T M Tang
- School of Chemistry, Cardiff University, Park Place, Cardiff, United Kingdom
| | - Matthew T Dickerson
- School of Chemistry, Cardiff University, Park Place, Cardiff, United Kingdom
| | - Louis Y P Luk
- School of Chemistry, Cardiff University, Park Place, Cardiff, United Kingdom.
| |
Collapse
|
6
|
Hemu X, Chan NY, Liew HT, Hu S, Zhang X, Serra A, Lescar J, Liu CF, Tam JP. Substrate-binding glycine residues are major determinants for hydrolase and ligase activity of plant legumains. THE NEW PHYTOLOGIST 2023; 238:1534-1545. [PMID: 36843268 DOI: 10.1111/nph.18841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Peptide asparaginyl ligases (PALs) are useful tools for precision modifications of proteins and live-cell surfaces by ligating peptides after Asn/Asp (Asx). They share high sequence and structural similarity to plant legumains that are generally known as asparaginyl endopeptidases (AEPs), thus making it challenging to identify PALs from AEPs. In this study, we investigate 875 plant species from algae to seed plants with available sequence data in public databases to identify new PALs. We conducted evolutionary trace analysis on 1500 plant legumains, including eight known PALs, to identify key residues that could differentiate ligases and proteases, followed by recombinant expression and functional validation of 16 novel legumains. Previously, we showed that the substrate-binding sequences flanking the catalytic site can strongly influence the enzymatic direction of a legumain and which we named as ligase-activity determinants (LADs). Here, we show that two conserved substrate-binding Gly residues of LADs are critical, but negative determinants for ligase activity. Our results suggest that specific glycine residues are molecular determinants to identify PALs and AEPs as two different legumain subfamilies, accounting for c. 1% and 88%, respectively.
Collapse
Affiliation(s)
- Xinya Hemu
- School of Biological Sciences, Synzymes and Natural Products Center (SYNC), Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
| | - Ning-Yu Chan
- School of Biological Sciences, Synzymes and Natural Products Center (SYNC), Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
| | - Heng Tai Liew
- School of Biological Sciences, Synzymes and Natural Products Center (SYNC), Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
| | - Side Hu
- NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore City, 637921, Singapore
| | - Xiaohong Zhang
- School of Biological Sciences, Synzymes and Natural Products Center (SYNC), Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
| | - Aida Serra
- School of Biological Sciences, Synzymes and Natural Products Center (SYNC), Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
- Neuroscience Area, +Pec Proteomics Research Group (+PPRG), Faculty of Medicine, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida), University of Lleida, Av. Rovira Roure, 80, Lleida, 25198, Spain
| | - Julien Lescar
- NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore City, 637921, Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences, Synzymes and Natural Products Center (SYNC), Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
| | - James P Tam
- School of Biological Sciences, Synzymes and Natural Products Center (SYNC), Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore City, 637921, Singapore
| |
Collapse
|
7
|
Hemu X, Zhang X, Chang HY, Poh JE, Tam JP. Consensus design and engineering of an efficient and high-yield peptide asparaginyl ligase for protein cyclization and ligation. J Biol Chem 2023; 299:102997. [PMID: 36764523 PMCID: PMC10017362 DOI: 10.1016/j.jbc.2023.102997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Plant legumains are Asn/Asp-specific endopeptidases that have diverse functions in plants. Peptide asparaginyl ligases (PALs) are a special legumain subtype that primarily catalyze peptide bond formation rather than hydrolysis. PALs are versatile protein engineering tools but are rarely found in nature. To overcome this limitation, here we describe a two-step method to design and engineer a high-yield and efficient recombinant PAL based on commonly found asparaginyl endopeptidases. We first constructed a consensus sequence derived from 1500 plant legumains to design the evolutionarily stable legumain conLEG that could be produced in E. coli with 20-fold higher yield relative to that for natural legumains. We then applied the ligase-activity determinant hypothesis to exploit conserved residues in PAL substrate-binding pockets and convert conLEG into conPAL1-3. Functional studies showed that conLEG is primarily a hydrolase, whereas conPALs are ligases. Importantly, conPAL3 is a superefficient and broadly active PAL for protein cyclization and ligation.
Collapse
Affiliation(s)
- Xinya Hemu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaohong Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hong Yi Chang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
| | - Jin En Poh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
8
|
Solberg R, Lunde NN, Forbord KM, Okla M, Kassem M, Jafari A. The Mammalian Cysteine Protease Legumain in Health and Disease. Int J Mol Sci 2022; 23:ijms232415983. [PMID: 36555634 PMCID: PMC9788469 DOI: 10.3390/ijms232415983] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
The cysteine protease legumain (also known as asparaginyl endopeptidase or δ-secretase) is the only known mammalian asparaginyl endopeptidase and is primarily localized to the endolysosomal system, although it is also found extracellularly as a secreted protein. Legumain is involved in the regulation of diverse biological processes and tissue homeostasis, and in the pathogenesis of various malignant and nonmalignant diseases. In addition to its proteolytic activity that leads to the degradation or activation of different substrates, legumain has also been shown to have a nonproteolytic ligase function. This review summarizes the current knowledge about legumain functions in health and disease, including kidney homeostasis, hematopoietic homeostasis, bone remodeling, cardiovascular and cerebrovascular diseases, fibrosis, aging and senescence, neurodegenerative diseases and cancer. In addition, this review addresses the effects of some marketed drugs on legumain. Expanding our knowledge on legumain will delineate the importance of this enzyme in regulating physiological processes and disease conditions.
Collapse
Affiliation(s)
- Rigmor Solberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, N-0316 Oslo, Norway
- Correspondence: (R.S.); (A.J.); Tel.: +47-22-857-514 (R.S.); +45-35-337-423 (A.J.)
| | - Ngoc Nguyen Lunde
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, N-0316 Oslo, Norway
| | - Karl Martin Forbord
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, N-0316 Oslo, Norway
- Department of Endocrinology and Metabolism, Odense University Hospital, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Meshail Okla
- Department of Endocrinology and Metabolism, Odense University Hospital, University of Southern Denmark, DK-5000 Odense, Denmark
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Moustapha Kassem
- Department of Endocrinology and Metabolism, Odense University Hospital, University of Southern Denmark, DK-5000 Odense, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Abbas Jafari
- Department of Endocrinology and Metabolism, Odense University Hospital, University of Southern Denmark, DK-5000 Odense, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Correspondence: (R.S.); (A.J.); Tel.: +47-22-857-514 (R.S.); +45-35-337-423 (A.J.)
| |
Collapse
|
9
|
Negi S, Hamori M, Sato A, Shimizu K, Kawahara-Nakagawa Y, Manabe T, Shibata N, Kitagishi H, Mashimo M, Sugiura Y. Transpeptidation reaction mediated by ligand- and metal cofactor-substituted Sortase A from Staphylococcus aureus. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shigeru Negi
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo, Kyotanabe, Kyoto 610-0395
| | - Mami Hamori
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo, Kyotanabe, Kyoto 610-0395
| | - Ayaka Sato
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo, Kyotanabe, Kyoto 610-0395
| | - Kyoko Shimizu
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo, Kyotanabe, Kyoto 610-0395
| | - Yuka Kawahara-Nakagawa
- Graduate School of Faculty of Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo, 678-1297
| | - Takayuki Manabe
- Clinical Research Support Center, Asahikawa Medical University Hospital, 2-1-1-1 Midorigaoka Higashi, Asahikawa 078-8510
| | - Nobuhito Shibata
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo, Kyotanabe, Kyoto 610-0395
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321
| | - Masato Mashimo
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo, Kyotanabe, Kyoto 610-0395
| | - Yukio Sugiura
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo, Kyotanabe, Kyoto 610-0395
| |
Collapse
|
10
|
Rodríguez V. Insights into post-translational modification enzymes from RiPPs: A toolkit for applications in peptide synthesis. Biotechnol Adv 2022; 56:107908. [PMID: 35032597 DOI: 10.1016/j.biotechadv.2022.107908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 12/30/2021] [Accepted: 01/09/2022] [Indexed: 11/02/2022]
Abstract
The increasing length and complexity of peptide drug candidates foster the development of novel strategies for their manufacture, which should include sustainable and efficient technologies. In this context, including enzymatic catalysis in the production of peptide molecules has gained interest. Here, several enzymes from ribosomally synthesized and post-translationally modified peptides biosynthesis pathways are reviewed, with attention to their capacity to introduce stability-promoting structural features on peptides, providing an initial framework towards their use in therapeutic peptide production processes.
Collapse
Affiliation(s)
- Vida Rodríguez
- Faculty of Engineering, Science and Technology, Bernardo O'Higgins University, Viel 1497, Santiago, Chile.
| |
Collapse
|
11
|
Cao Y, Bi X. Butelase-1 as the Prototypical Peptide Asparaginyl Ligase and Its Applications: A Review. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Chen Y, Zhang D, Zhang X, Wang Z, Liu CF, Tam JP. Site-Specific Protein Modifications by an Engineered Asparaginyl Endopeptidase from Viola canadensis. Front Chem 2021; 9:768854. [PMID: 34746098 PMCID: PMC8568951 DOI: 10.3389/fchem.2021.768854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/06/2021] [Indexed: 12/04/2022] Open
Abstract
Asparaginyl endopeptidases (AEPs) or legumains are Asn/Asp (Asx)-specific proteases that break peptide bonds, but also function as peptide asparaginyl ligases (PALs) that make peptide bonds. This ligase activity can be used for site-specific protein modifications in biochemical and biotechnological applications. Although AEPs are common, PALs are rare. We previously proposed ligase activity determinants (LADs) of these enzymes that could determine whether they catalyze formation or breakage of peptide bonds. LADs are key residues forming the S2 and S1' substrate-binding pockets flanking the S1 active site. Here, we build on the LAD hypothesis with the engineering of ligases from proteases by mutating the S2 and S1' pockets of VcAEP, an AEP from Viola canadensis. Wild type VcAEP yields <5% cyclic product from a linear substrate at pH 6.5, whereas the single mutants VcAEP-V238A (Vc1a) and VcAEP-Y168A (Vc1b) targeting the S2 and S1' substrate-binding pockets yielded 34 and 61% cyclic products, respectively. The double mutant VcAEP-V238A/Y168A (Vc1c) targeting both the S2 and S1' substrate-binding pockets yielded >90% cyclic products. Vc1c had cyclization efficiency of 917,759 M-1s-1, which is one of the fastest rates for ligases yet reported. Vc1c is useful for protein engineering applications, including labeling of DARPins and cell surface MCF-7, as well as producing cyclic protein sfGFP. Together, our work validates the importance of LADs for AEP ligase activity and provides valuable tools for site-specific modification of proteins and biologics.
Collapse
Affiliation(s)
- Yu Chen
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Synzymes and Natural Products Center, Nanyang Technological University, Singapore, Singapore
| | - Dingpeng Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Synzymes and Natural Products Center, Nanyang Technological University, Singapore, Singapore
| | - Xiaohong Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Synzymes and Natural Products Center, Nanyang Technological University, Singapore, Singapore
| | - Zhen Wang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Synzymes and Natural Products Center, Nanyang Technological University, Singapore, Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Synzymes and Natural Products Center, Nanyang Technological University, Singapore, Singapore
- Nanyang Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - James P. Tam
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Synzymes and Natural Products Center, Nanyang Technological University, Singapore, Singapore
- Nanyang Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|