1
|
Sun Y, Yao Q, Xing W, Jiang H, Li Y, Xiong W, Zhu W, Zheng Y. Residual Strain Evolution Induced by Crystallization Kinetics During Anti-Solvent Spin Coating in Organic-Inorganic Hybrid Perovskite. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2205986. [PMID: 37096861 DOI: 10.1002/advs.202205986] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Indexed: 05/03/2023]
Abstract
Organic-inorganic hybrid perovskite (OIHP) polycrystalline thin films are attractive due to their outstanding photoelectronic properties. The anti-solvent spin coating method is the most widely used to synthesize these thin films, and the residual strain is inevitably originates and evolves during the process. However, this residual strain evolution induced by crystallization kinetics is still poorly understood. In this work, the in situ and ex situ synchrotron grazing-incidence wide-angle X-ray scattering (GIWAXS) are utilized to characterize the evolution and distribution of the residual strain in the OIHP polycrystalline thin film during the anti-solvent spin coating process. A mechanical model is established and the mechanism of the crystallization kinetics-induced residual strain evolution process is discussed. This work reveals a comprehensive understanding of the residual strain evolution during the anti-solvent spin coating process in the OIHP polycrystalline thin films and provides important guidelines for the residual strain-related strain engineering, morphology control, and performance enhancement.
Collapse
Affiliation(s)
- Y Sun
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - Q Yao
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - W Xing
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - H Jiang
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - Y Li
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - W Xiong
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - W Zhu
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - Y Zheng
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
2
|
Zhang T, Zhang S, Gu Z, Zhao R, Wang S, Guo L, Li T, Zhang Y, Song Y. Pen-writing high-quality perovskite films and degradable optoelectronic devices. RSC Adv 2022; 12:3924-3930. [PMID: 35425414 PMCID: PMC8981164 DOI: 10.1039/d1ra09128j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/18/2022] [Indexed: 11/21/2022] Open
Abstract
Paper is ubiquitous in the daily life and has been widely used for writing and drawing because of their low-cost, widely accessible, and degradable properties. However, simple ways to fabricate paper-based optoelectronic devices remain a great challenge. In this work, we report a facile method to fabricate high-quality perovskite films and optoelectronic devices on paper by direct pen-writing. Through introducing seed layers on papers, planar-integrated single-crystal perovskite films are easily prepared using commercial pens. Based on such a simple and convenient method, perovskite photodetector arrays and image sensors with graphite electrodes are fabricated on paper, and show satisfactory performances. This method provides a simple and effective approach for preparation of paper-based perovskite devices. It will be of significance for the development of degradable optoelectronic devices.
Collapse
Affiliation(s)
- Ting Zhang
- Green Catalysis Center, College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450051 China
| | - Shasha Zhang
- Green Catalysis Center, College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450051 China
| | - Zhenkun Gu
- Green Catalysis Center, College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450051 China
| | - Rudai Zhao
- Green Catalysis Center, College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450051 China
| | - Shiheng Wang
- Green Catalysis Center, College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450051 China
| | - Lutong Guo
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tiesheng Li
- Green Catalysis Center, College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450051 China
| | - Yiqiang Zhang
- Green Catalysis Center, College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450051 China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|