1
|
Xu G, Liu C, Yang C, Zhang H, Hou C, Peng L, Wang L, Zhao RS. Hydroxylated hierarchical flower-like COF for solid-phase extraction of adrenergic receptor agonists in milk. Mikrochim Acta 2024; 191:297. [PMID: 38709347 DOI: 10.1007/s00604-024-06386-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
A new detection platform based on a hydroxylated covalent organic framework (COF) integrated with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was constructed and used for detecting adrenergic receptor agonists (ARAs) residues in milk. The hydroxylated COF was prepared by polymerization of tris(4-aminophenyl)amine and 1,3,5-tris(4-formyl-3-hydroxyphenyl)benzene and applied to solid-phase extraction (SPE) of ARAs. This hydroxylated COF was featured with hierarchical flower-like morphology, easy preparation, and copious active adsorption sites. The adsorption model fittings and molecular simulation were applied to explore the potential adsorption mechanism. This detection platform was suitable for detecting four α2- and five β2-ARAs residues in milk. The linear ranges of the ARAs were from 0.25 to 50 µg·kg-1; the intra-day and the inter-day repeatability were in the range 2.9-7.9% and 2.0-10.1%, respectively. This work demonstrates this hydroxylated COF has great potential as SPE cartridge packing, and provides a new way to determine ARAs residues in milk.
Collapse
Affiliation(s)
- Guiju Xu
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China.
| | - Chuqing Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chunlei Yang
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hongwei Zhang
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China.
| | - Chenghao Hou
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lizeng Peng
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lei Wang
- Shandong Institute for Food and Drug Control, Jinan, China
| | - Ru-Song Zhao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
2
|
Hsieh YH, Jung WT, Lee HL. Novel vinylene-based covalent organic framework as a promising adsorbent for the rapid extraction of beta-agonists in meat samples. Anal Chim Acta 2023; 1272:341492. [PMID: 37355321 DOI: 10.1016/j.aca.2023.341492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/26/2023]
Abstract
Beta-agonists are potent bronchodilators approved for the treatment of asthma and tocolysis. However, they have been extensively misused as feed additives in the veterinary field to improve feed efficiency. The concern over their potential hazard to health has come to the fore again. In this study, a novel vinylene-based covalent organic framework (V-COF-1) with a two-dimensional structure was developed. The structure shows good tolerance in a variety of mediums, which can be attributed to the low polarity linkage. The high specific surface area and variable interaction with analytes accelerate the extraction time. Furthermore, the swelling resulting from the formation of hydrogen bonds by the protic solvent intercalation with the triazine group also improves the adsorption efficiency. Finally, due to its great reusability, it is economical material in sample preparation application. The V-COF-1 based μ-dSPE approach was coupled with UHPLC-MS/MS to develop a highly sensitive and selective method. The linearity of the method ranged from 0.05 to 20 ng g-1 with a correlation coefficient (R2) higher than 0.9958, and the limits of detection and quantification fell in the ranges of 0.01-0.10 ng g-1 and 0.04-0.32 ng g-1. The proposed method has been successfully applied to determine beta-agonists in meat samples, and the results indicated good recovery of 82.2-116%. The intra-day and inter-day precision were less than 6.61%, indicating the potential for sustainable application in food analysis.
Collapse
Affiliation(s)
- Yi-Hsuan Hsieh
- Department of Chemistry, Fu Jen Catholic University, Xinzhuang District, New Taipei City, 24205, Taiwan
| | - Wei-Ting Jung
- Department of Chemistry, Fu Jen Catholic University, Xinzhuang District, New Taipei City, 24205, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, Xinzhuang District, New Taipei City, 24205, Taiwan.
| |
Collapse
|
3
|
Zhou J, Li F, Wang M, Yan C, Yang M, Wang T, Zhang L. Preparation of clorprenaline certified reference material: Purity determination and uncertainty evaluation. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
4
|
Hou H, Jin Y, Sheng L, Huang Y, Zhao R. One-step synthesis of well-defined molecularly imprinted nanospheres for the class-selective recognition and separation of β-blockers in human serum. J Chromatogr A 2022; 1673:463204. [PMID: 35689880 DOI: 10.1016/j.chroma.2022.463204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 01/20/2023]
Abstract
β-blockers are a class of medications that are used to treat abnormal heart rhythms and hypertension. Molecularly imprinted polymers (MIPs) capable of selective recognizing and extracting β-blockers from complex biological samples hold great promise in bioanalytical and biomedical applications, but developing such artificial receptor materials is still challenging. Herein, we introduce a simple one-step method for the synthesis of well-defined molecularly imprinted nanospheres in high yield (83.6-94.4%) via reversible addition-fragmentation chain transfer (RAFT) precipitation polymerization for the selective recognition and extraction of the β-blockers from human serum. The prepared MIPs are characterized in terms of morphology, pore properties, binding kinetics, capacity, selectivity, and recognition mechanisms. The uniform nanoscale-imprinted layer favored the rapid mass transfer of β-blockers. The binding studies showed the high adsorption capacity (126.8 μmol/g) and selectivity of the developed nanomaterial. The investigation on the recognition mechanism reveals that multiple driving forces participate in the binding between MIP and β-blockers, where hydrogen bonding plays as the dominating role for the specific recognition. The MIP was successfully applied for the direct enrichment of five β-blockers from human serum with HPLC recoveries ranging from 82.9 to 100.3% and RSD of 0.5-6.9% (n = 3).
Collapse
Affiliation(s)
- Huiqing Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Le Sheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|