1
|
Gao YY, He J, Li XH, Li JH, Wu H, Wen T, Li J, Hao GF, Yoon J. Fluorescent chemosensors facilitate the visualization of plant health and their living environment in sustainable agriculture. Chem Soc Rev 2024; 53:6992-7090. [PMID: 38841828 DOI: 10.1039/d3cs00504f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Globally, 91% of plant production encounters diverse environmental stresses that adversely affect their growth, leading to severe yield losses of 50-60%. In this case, monitoring the connection between the environment and plant health can balance population demands with environmental protection and resource distribution. Fluorescent chemosensors have shown great progress in monitoring the health and environment of plants due to their high sensitivity and biocompatibility. However, to date, no comprehensive analysis and systematic summary of fluorescent chemosensors used in monitoring the correlation between plant health and their environment have been reported. Thus, herein, we summarize the current fluorescent chemosensors ranging from their design strategies to applications in monitoring plant-environment interaction processes. First, we highlight the types of fluorescent chemosensors with design strategies to resolve the bottlenecks encountered in monitoring the health and living environment of plants. In addition, the applications of fluorescent small-molecule, nano and supramolecular chemosensors in the visualization of the health and living environment of plants are discussed. Finally, the major challenges and perspectives in this field are presented. This work will provide guidance for the design of efficient fluorescent chemosensors to monitor plant health, and then promote sustainable agricultural development.
Collapse
Affiliation(s)
- Yang-Yang Gao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jie He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Xiao-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jian-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Hong Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Ting Wen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jun Li
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
2
|
Freire MS, Silva HJB, Albuquerque GM, Monte JP, Lima MTA, Silva JJ, Pereira GAL, Pereira G. Advances on chalcogenide quantum dots-based sensors for environmental pollutants monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172848. [PMID: 38703843 DOI: 10.1016/j.scitotenv.2024.172848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Water contamination represents a significant ecological impact with global consequences, contributing to water scarcity worldwide. The presence of several pollutants, including heavy metals, pharmaceuticals, pesticides, and pathogens, in water resources underscores a pressing global concern, prompting the European Union (EU) to establish a Water Watch List to monitor the level of these substances. Nowadays, the standard methods used to detect and quantify these contaminants are mainly liquid or gas chromatography coupled with mass spectrometry (LC/GC-MS). While these methodologies offer precision and accuracy, they require expensive equipment and experienced technicians, and cannot be used on the field. In this context, chalcogenide quantum dots (QDs)-based sensors have emerged as promising, user-friendly, practical, and portable tools for environmental monitoring. QDs are semiconductor nanocrystals that possess excellent properties, and have demonstrated versatility across various sensor types, such as fluorescent, electrochemical, plasmonic, and colorimetric ones. This review summarizes recent advances (2019-2023) in the use of chalcogenide QDs for environmental sensing, highlighting the development of sensors capable of detect efficiently heavy metals, anions, pharmaceuticals, pesticides, endocrine disrupting compounds, organic dyes, toxic gases, nitroaromatics, and pathogens.
Collapse
Affiliation(s)
- Mércia S Freire
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Hitalo J B Silva
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Joalen P Monte
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Max T A Lima
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Jailson J Silva
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Giovannia A L Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil.
| | - Goreti Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil; Departamento de Química & CESAM, Universidade de Aveiro, Aveiro, Portugal.
| |
Collapse
|
3
|
Zhang M, Chen Z, Liu X, Song C, Zeng C, Lv T, Xu Z, Chen X, Wang L, Liu B, Peng X. Dual-mode supramolecular fluorescent probe for rapid and on-site detection of chlorpyrifos in the environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131177. [PMID: 36966627 DOI: 10.1016/j.jhazmat.2023.131177] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023]
Abstract
Chlorpyrifos (CPF) as a classic organophosphorus pesticide has been widely used in agricultural applications to control insects and worms. CPF in the environment can cause deaths of diverse kinds of aquatic organism and bring a high risk to human health. Therefore, the development of effective analytical method for CPF is of great importance. In this work, a novel dual-mode albumin (ALB)-based supramolecular probe FD@ALB was designed and prepared for rapid detection of CPF in the environment. The limit of detection is 0.57 μM (∼ 0.2 ppm) with a wider detection range up to 200 μM, which is satisfactory for application. The sensing mechanism can be ascribed to CPF-induced phosphorylation of ALB, thus leading to a change in the binding microenvironment of FD dye. Moreover, the paper-based test strips were used in conjunction with the FD@ALB, realizing the portable detection of CPF. This method was demonstrated to be suitable for on-site detection of CPF in various kinds of environmental samples, including water, soil, and food samples, with the aid of a smartphone. To the best of our knowledge, this is the first analytical method achieving a combination of the rapid and ratiometric detection of CPF in the environment.
Collapse
Affiliation(s)
- Mingyuan Zhang
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, PR China
| | - Zihao Chen
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, PR China
| | - Xinhe Liu
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, PR China
| | - Chao Song
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, PR China
| | - Conghui Zeng
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, PR China
| | - Taoyuze Lv
- School of Physics, The University of Sydney, NSW 2006, Australia
| | - Zhongyong Xu
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoqiang Chen
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, PR China
| | - Lei Wang
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, PR China
| | - Bin Liu
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, PR China.
| | - Xiaojun Peng
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, PR China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
4
|
Zhang J, Li Y, Teng L, Cao Y, Hu X, Fang G, Wang S. A molecularly imprinted fluorescence sensor for sensitive detection of tetracycline using nitrogen-doped carbon dots-embedded zinc-based metal-organic frameworks as signal-amplifying tags. Anal Chim Acta 2023; 1251:341032. [PMID: 36925300 DOI: 10.1016/j.aca.2023.341032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/04/2023]
Abstract
Tetracycline (TC) residues not only endanger human health, but also are detrimental to the sustainable development of aquaculture and animal husbandry. Herein, a novel fluorescence sensor with high sensitivity and selectivity was developed based on nitrogen-doped carbon dots embedded in zinc-based metal-organic frameworks and incorporating molecularly imprinted polymer (ZIF-8&N-CDs@MIP). The physical and chemical properties of the ZIF-8&N-CDs@MIP had been characterized by SEM, TEM, FTIR, XRD, BET, TGA, etc. Under optimal conditions, the limit of detection (LOD) of the novel sensor was 0.045 μg mL-1 with the concentration of TC in the range of 0.1-4.0 μg mL-1. In addition, the prepared imprinted polymers showed superior adsorption selectivity to tetracycline compared with non-imprinted polymers, and the quenching mechanism of ZIF-8&N-CDs@MIP was demonstrated to be attributed to the inner filter effect (IFE). This work provided an effective and reliable method for the specific detection of tetracycline and was successfully applied in milk and egg samples with satisfactory recoveries (80.67-95.22%).
Collapse
Affiliation(s)
- Jinni Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yan Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Longhao Teng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yichuan Cao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xuelian Hu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
5
|
Gyanjyoti A, Guleria P, Awasthi A, Singh K, Kumar V. Recent advancement in fluorescent materials for optical sensing of pesticides. MATERIALS TODAY COMMUNICATIONS 2023; 34:105193. [DOI: 10.1016/j.mtcomm.2022.105193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
6
|
Saddique Z, Imran M, Javaid A, Rizvi NB, Akhtar MN, Iqbal HMN, Bilal M. Enzyme-Linked Metal Organic Frameworks for Biocatalytic Degradation of Antibiotics. Catal Letters 2023. [DOI: 10.1007/s10562-022-04261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
AbstractMetal organic frameworks (MOFs) are multi-dimensional network of crystalline material held together by bonding of metal atoms and organic ligands. Owing to unique structural, chemical, and physical properties, MOFs has been used for enzyme immobilization to be employed in different catalytic process, including catalytic degradation of antibiotics. Immobilization process other than providing large surface provides enzyme with enhanced stability, catalytic activity, reusability, and selectivity. There are various approaches of enzyme immobilization over MOFs including physical adsorption, chemical bonding, diffusion and in situ encapsulation. In situ encapsulation is one the best approach that provides extra stability from unfolding and denaturation in harsh industrial conditions. Presence of antibiotic in environment is highly damaging for human in particular and ecosystem in general. Different methods such as ozonation, oxidation, chlorination and catalysis are available for degradation or removal of antibiotics from environment, however these are associated with several issues. Contrary to these, enzyme immobilized MOFs are novel system to be used in catalytic degradation of antibiotics. Enzyme@MOFs are more stable, reusable and more efficient owing to additional support of MOFs to natural enzymes in well-established process of photocatalysis for degradation of antibiotics aimed at environmental remediation. Prime focus of this review is to present catalytic degradation of antibiotics by enzyme@MOFs while outlining their synthetics approaches, characterization, and mechanism of degradation. Furthermore, this review highlights the significance of enzyme@MOFs system for antibiotics degradation in particular and environmental remediation in general. Current challenges and future perspective of research in this field are also outlined along with concluding comments.
Graphical Abstract
Collapse
|
7
|
Zhang Y, Tan L, Wang K, Wang N, Wang J. Highly Efficient Selective Extraction of Chlorpyrifos Residues from Apples by Magnetic Microporous Molecularly Imprinted Polymer Prepared by Reversible Addition-Fragmentation Chain Transfer Surface Polymerization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1046-1055. [PMID: 36621942 DOI: 10.1021/acs.jafc.2c06236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chlorpyrifos, as a moderate toxic organophosphorus pesticide, is prone to lingering in the environment and cannot be monitored easily. In this study, a magnetic, microporous, molecularly imprinted polymer was synthesized by using the reversible addition-fragmentation chain transfer polymerization method. The synthesized materials were properly characterized in terms of morphology, selectivity, and sorption capacity and used as sorbents for magnetic solid phase extraction for the selective determination of chlorpyrifos in apple samples. Results showed that the magnetic microporous molecularly imprinted materials were rough and porous spheres at an average size of 5 nm. The materials were highly selective toward chlorpyrifos with a superior sorption capacity of 167.99 mg·g-1 and were resistant to the interference of competitive pollutants. After optimization, the recoveries of chlorpyrifos reached 96.2-106.5%, and the detection limit was 0.028 μg·kg-1 by HPLC. Based on these analytical validation results, the developed method could be effective at determining chlorpyrifos in apples.
Collapse
Affiliation(s)
- Yuewei Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao266100, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao266100, China
| | - Kunpeng Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao266100, China
| | - Na Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao266100, China
| |
Collapse
|
8
|
Wu L, Zeng W, Hu B, Wu T, Zhou M, Xie W. Magnetic relaxation switching immunoassay for chlorpyrifos using enzyme-mediated Fe2+/Fe3+ conversion and magnetic separation. Anal Chim Acta 2022; 1227:340311. [DOI: 10.1016/j.aca.2022.340311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/01/2022]
|
9
|
Zinc Imidazolate Metal–Organic Frameworks-8-Encapsulated Enzymes/Nanoenzymes for Biocatalytic and Biomedical Applications. Catal Letters 2022. [DOI: 10.1007/s10562-022-04140-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Sohrabi H, Sani PS, Orooji Y, Majidi MR, Yoon Y, Khataee A. MOF-based sensor platforms for rapid detection of pesticides to maintain food quality and safety. Food Chem Toxicol 2022; 165:113176. [DOI: 10.1016/j.fct.2022.113176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/12/2022] [Accepted: 05/21/2022] [Indexed: 12/15/2022]
|
11
|
Gao Y, Di X, Wang F, Sun P. Room temperature tunable multicolor phosphorescent polymers for humidity detection and information encryption. RSC Adv 2022; 12:8145-8153. [PMID: 35424729 PMCID: PMC8982396 DOI: 10.1039/d2ra00294a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
Amorphous polymer-based room temperature phosphorescence (RTP) materials exhibiting tunable emission colors have received tremendous attention and are extremely challenging to prepare. Herein, polyacrylamide-based RTP materials with tunable multicolor emission were prepared via copolymerizing phosphor with concentration dependent luminescence colors and acrylamide with different molar ratios. The hydrogen bonding interactions and chemically crosslinked structures in these polymers effectively restrict the mobility of phosphors and activate efficient RTP emission. The molar ratio of phosphor and acrylamide has a significant influence on the photophysical properties of these polymers, which can be used to fabricate multicolor materials. In addition, the RTP intensity decreases with increasing humidity due to the disassociation of hydrogen bonding by adsorption of water, manifesting as a humidity sensor. Benefiting from the distinguishable RTP lifetimes and the responsiveness to humidity, triple encoding for information encryption is successfully realized.
Collapse
Affiliation(s)
- Yulei Gao
- Key Laboratory of Functional Polymer Materials of Ministry of Education and College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
| | - Xiang Di
- Key Laboratory of Functional Polymer Materials of Ministry of Education and College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
| | - Fenfen Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education and College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
| | - Pingchuan Sun
- Key Laboratory of Functional Polymer Materials of Ministry of Education and College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
| |
Collapse
|