1
|
Xing J, Liu S. Application of loaded graphene oxide biomaterials in the repair and treatment of bone defects. Bone Joint Res 2024; 13:725-740. [PMID: 39631429 PMCID: PMC11617066 DOI: 10.1302/2046-3758.1312.bjr-2024-0048.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds' diverse roles and potential applications in bone defect treatment.
Collapse
Affiliation(s)
- Jinyi Xing
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shuzhong Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Zhang F, Li N, Shi JF, Wang YY, Yan DX, Li ZM. Cation Bimetallic MOF Anchored Carbon Fiber for Highly Efficient Microwave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312135. [PMID: 38501794 DOI: 10.1002/smll.202312135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/29/2024] [Indexed: 03/20/2024]
Abstract
Carbon fiber (CF) is a potential microwave absorption (MA) material due to the strong dielectric loss. Nevertheless, owing to the high conductivity, poor impedance matching of carbon-based materials results in limited MA performance. How to solve this problem and achieve excellent MA performance remains a principal challenge. Herein, taking full advantage of CF and excellent impedance matching of bimetallic metal-organic frameworks (MOF) derivatives layer, an excellent microwave absorber based on micron-scale 1D CF and NiCoMOF (CF@NiCoMOF-800) is developed. After adjusting the oxygen vacancies of the bimetallic MOF, the resultant microwave absorber presented excellent MA properties including the minimum reflection loss (RLmin) of -80.63 dB and wide effective absorption bandwidth (EAB) of 8.01 GHz when its mass percent is only 5 wt.% and the thickness is 2.59 mm. Simultaneously, the mechanical properties of the epoxy resin (EP)-based coating with this microwave absorber are effectively improved. The hardness (H), elastic modulus (E), bending strength, and compressive strength of CF@NiCoMOF-800/EP coating are 334 MPa, 5.56 GPa, 82.2 MPa, and 135.8 MPa, which is 38%, 15%, 106% and 53% higher than EP coating. This work provides a promising solution for carbon materials achieving excellent MA properties and mechanical properties.
Collapse
Affiliation(s)
- Feng Zhang
- School of Aeronautics and Astronautics, Robotic Satellite Key Laboratory of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Nan Li
- School of Aeronautics and Astronautics, Robotic Satellite Key Laboratory of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Jun-Feng Shi
- School of Aeronautics and Astronautics, Robotic Satellite Key Laboratory of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Yue-Yi Wang
- School of Aeronautics and Astronautics, Robotic Satellite Key Laboratory of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Ding-Xiang Yan
- School of Aeronautics and Astronautics, Robotic Satellite Key Laboratory of Sichuan Province, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
3
|
Wang Z, Li S, Wu Z, Kang Y, Xie S, Cai Z, Shan X, Li Q. Pulsed electromagnetic field-assisted reduced graphene oxide composite 3D printed nerve scaffold promotes sciatic nerve regeneration in rats. Biofabrication 2024; 16:035013. [PMID: 38604162 DOI: 10.1088/1758-5090/ad3d8a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Peripheral nerve injuries can lead to sensory or motor deficits that have a serious impact on a patient's mental health and quality of life. Nevertheless, it remains a major clinical challenge to develop functional nerve conduits as an alternative to autologous grafts. We applied reduced graphene oxide (rGO) as a bioactive conductive material to impart electrophysiological properties to a 3D printed scaffold and the application of a pulsed magnetic field to excite the formation of microcurrents and induce nerve regeneration.In vitrostudies showed that the nerve scaffold and the pulsed magnetic field made no effect on cell survival, increased S-100βprotein expression, enhanced cell adhesion, and increased the expression level of nerve regeneration-related mRNAs.In vivoexperiments suggested that the protocol was effective in promoting nerve regeneration, resulting in functional recovery of sciatic nerves in rats, when they were damaged close to that of the autologous nerve graft, and increased expression of S-100β, NF200, and GAP43. These results indicate that rGO composite nerve scaffolds combined with pulsed magnetic field stimulation have great potential for peripheral nerve rehabilitation.
Collapse
Affiliation(s)
- Zichao Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
- National Center for Stomatology, Beijing 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing 100081, People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, Beijing 100081, People's Republic of China
| | - Shijun Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
- National Center for Stomatology, Beijing 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing 100081, People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, Beijing 100081, People's Republic of China
| | - Zongxi Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510030, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510030, People's Republic of China
| | - Yifan Kang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
- National Center for Stomatology, Beijing 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing 100081, People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, Beijing 100081, People's Republic of China
| | - Shang Xie
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
- National Center for Stomatology, Beijing 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing 100081, People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, Beijing 100081, People's Republic of China
| | - Zhigang Cai
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
- National Center for Stomatology, Beijing 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing 100081, People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, Beijing 100081, People's Republic of China
| | - Xiaofeng Shan
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
- National Center for Stomatology, Beijing 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing 100081, People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, Beijing 100081, People's Republic of China
| | - Qing Li
- National Center for Stomatology, Beijing 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing 100081, People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, People's Republic of China
- Center of Digital Dentistry, Second Clinical Division, Peking University School and Hospital of Stomatology and National Center of Stomatology, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, Beijing 100081, People's Republic of China
| |
Collapse
|
4
|
Duru İ, Büyük NI, Köse GT, Marques DW, Bruce KA, Martin JR, Ege D. Incorporating the Antioxidant Fullerenol into Calcium Phosphate Bone Cements Increases Cellular Osteogenesis without Compromising Physical Cement Characteristics. ADVANCED ENGINEERING MATERIALS 2023; 25:2300301. [PMID: 37982016 PMCID: PMC10656051 DOI: 10.1002/adem.202300301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 11/21/2023]
Abstract
Herein, fullerenol (Ful), a highly water-soluble derivative of C60 fullerene with demonstrated antioxidant activity, is incorporated into calcium phosphate cements (CPCs) to enhance their osteogenic ability. CPCs with added carboxymethyl cellulose/gelatin (CMC/Gel) are doped with biocompatible Ful particles at concentrations of 0.02, 0.04, and 0.1 wt v%-1 and evaluated for Ful-mediated mechanical performance, antioxidant activity, and in vitro cellular osteogenesis. CMC/gel cements with the highest Ful concentration decrease setting times due to increased hydrogen bonding from Ful's hydroxyl groups. In vitro studies of reactive oxygen species (ROS) scavenging with CMC/gel cements demonstrate potent antioxidant activity with Ful incorporation and cement scavenging capacity is highest for 0.02 and 0.04 wt v%-1 Ful. In vitro cytotoxicity studies reveal that 0.02 and 0.04 wt v%-1 Ful cements also protect cellular viability. Finally, increase of alkaline phosphatase (ALP) activity and expression of runt-related transcription factor 2 (Runx2) in MC3T3-E1 pre-osteoblast cells treated with low-dose Ful cements demonstrate Ful-mediated osteogenic differentiation. These results strongly indicate that the osteogenic abilities of Ful-loaded cements are correlated with their antioxidant activity levels. Overall, this study demonstrates exciting potential of Fullerenol as an antioxidant and proosteogenic additive for improving the performance of calcium phosphate cements in bone reconstruction procedures.
Collapse
Affiliation(s)
- İlayda Duru
- Institute of Biomedical Engineering Boğaziçi University Rasathane Street, Üsküdar, İstanbul 34684, Turkey
| | - Nisa Irem Büyük
- Department of Genetics and Bioengineering Faculty of Engineering Yeditepe University Ataşehir, İstanbul 34755, Turkey
| | - Gamze Torun Köse
- Department of Genetics and Bioengineering Faculty of Engineering Yeditepe University Ataşehir, İstanbul 34755, Turkey
| | - Dylan Widder Marques
- Department of Biomedical Engineering College of Engineering and Applied Science University of Cincinnati Cincinnati 45236, OH, USA
| | - Karina Ann Bruce
- Department of Biomedical Engineering College of Engineering and Applied Science University of Cincinnati Cincinnati 45236, OH, USA
| | - John Robert Martin
- Department of Biomedical Engineering College of Engineering and Applied Science University of Cincinnati Cincinnati 45236, OH, USA
| | - Duygu Ege
- Institute of Biomedical Engineering Boğaziçi University Rasathane Street, Üsküdar, İstanbul 34684, Turkey
| |
Collapse
|
5
|
Vimalanathan B, Vijaya JJ, Mary BCJ, Mary RN, Km M, Jayavel R, Abumousa RA, Bououdina M. The Cytotoxic Effectiveness of Thiourea-Reduced Graphene Oxide on Human Lung Cancer Cells and Fungi. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:149. [PMID: 36616058 PMCID: PMC9823875 DOI: 10.3390/nano13010149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
This study demonstrated the effective reduction of graphene oxide (GO) by employing thiourea as a reducing and stabilizing agent. Two fungi (Aspergillus flavus and Aspergillus fumigatus) were used for anti-fungal assay. Cell viability, cell cycle analysis, DNA fragmentation, and cell morphology were assessed to determine the toxicity of thiourea-reduced graphene oxide (T-rGO) on human lung cancer cells. The results revealed that GO and T-rGO were hazardous to cells in a dose-dependent trend. The viability of both A. fumigatus and A. flavus was affected by GO and T-rGO. The reactive oxygen species produced by T-rGO caused the death of A. flavus and A. fumigatus cells. This study highlighted the effectiveness of T-rGO as an antifungal agent. In addition, T-rGO was found to be more harmful to cancer cells than GO. Thus, T-rGO manifested great potential in biological and biomedical applications.
Collapse
Affiliation(s)
- Babu Vimalanathan
- Crystal Growth Centre, Anna University, Chennai 600025, Tamil Nadu, India
| | - J. Judith Vijaya
- Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600034, Tamil Nadu, India
| | - B. Carmel Jeeva Mary
- Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600034, Tamil Nadu, India
| | - Ruby Nirmala Mary
- Crystal Growth Centre, Anna University, Chennai 600025, Tamil Nadu, India
| | - Mohamed Km
- Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600034, Tamil Nadu, India
| | - Ramasamy Jayavel
- Crystal Growth Centre, Anna University, Chennai 600025, Tamil Nadu, India
| | - Rasha A. Abumousa
- Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Mohamed Bououdina
- Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| |
Collapse
|
6
|
Vimalanathan B, Vijaya JJ, Mary BCJ, Ignacimuthu S, Daniel M, Jayavel R, Bououdina M, Bellucci S. The Anticancer Efficacy of Thiourea-Mediated Reduced Graphene Oxide Nanosheets against Human Colon Cancer Cells (HT-29). J Funct Biomater 2022; 13:jfb13030130. [PMID: 36135565 PMCID: PMC9502518 DOI: 10.3390/jfb13030130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 01/03/2023] Open
Abstract
The current research focuses on the fabrication of water-soluble, reduced graphene oxide (rGO) employing thiourea (T) using a simple cost-effective method, and subsequently examining its anticancer characteristics. The cytotoxicity caused by graphene oxide (GO) and T-rGO is investigated in detail. Biological results reveal a concentration-dependent toxicity of GO and T-rGO in human colon cancer cells HT-29. A decrease in cell viability alongside DNA fragmentation is observed. Flow cytometry analysis confirms the cytotoxic effects. The novelty in this work is the use of raw graphite powder, and oxidants such as KMNO4, NaNO3, and 98 percent H2SO4 to produce graphene oxide by a modified Hummers method. This study demonstrates a simple and affordable procedure for utilising thiourea to fabricate a water-soluble reduced graphene oxide, which will be useful in a variety of biomedical applications.
Collapse
Affiliation(s)
| | - J. Judith Vijaya
- Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600034, India
- Correspondence: (J.J.V.); (R.J.)
| | - B. Carmel Jeeva Mary
- Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600034, India
| | | | - Magesh Daniel
- Department of Zoology, Loyola College, Chennai 600034, India
| | - Ramasamy Jayavel
- Crystal Growth Centre, Anna University, Chennai 600025, India
- Correspondence: (J.J.V.); (R.J.)
| | - Mohamed Bououdina
- Department of Mathematics and Sciences, Faculty of Humanities and Sciences, Prince Sultan University, Riyadh 122001, Saudi Arabia
| | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
| |
Collapse
|