1
|
Moein-Najafabadi S, Safaei-Ghomi J. Silica/APTPOSS anchored on MnFe 2O 4 as an efficient nanomagnetic composite for the preparation of spiro-pyrano [2, 3-c] chromene derivatives. BMC Chem 2024; 18:155. [PMID: 39182154 PMCID: PMC11344937 DOI: 10.1186/s13065-024-01270-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
The synthesis of Octakis [3- (3-amino propyl triethoxysilane) propyl] octa-silsesquioxane (APTPOSS), a derivative of polyhedral oligomeric silsesquioxane, was utilized to produce an efficient nanocomposite. MNPs@Silica/APTPOSS was characterized through scanning electron microscopy, Fourier transform infrared spectroscopy, vibrating sample magnetometry, X-ray diffraction, and Thermogravimetric analysis. These magnetic nanoparticles, a combination of organic-inorganic hybrid polyhedral oligomeric silsesquioxane, were utilized as a proficient heterogeneous catalyst in the one-pot synthesis of spirooxindoles derivatives. Furthermore, they could be swiftly isolated and reused six times while maintaining their catalytic efficiency.
Collapse
Affiliation(s)
- Samira Moein-Najafabadi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, P.O. Box 87317-51167, Kashan, I. R. of Iran
| | - Javad Safaei-Ghomi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, P.O. Box 87317-51167, Kashan, I. R. of Iran.
| |
Collapse
|
2
|
Aksenov AV, Makieva DC, Arestov RA, Arutiunov NA, Aksenov DA, Aksenov NA, Leontiev AV, Aksenova IV. Metal-Free, PPA-Mediated Fisher Indole Synthesis via Tandem Hydroamination-Cyclization Reaction between Simple Alkynes and Arylhydrazines. Int J Mol Sci 2024; 25:8750. [PMID: 39201437 PMCID: PMC11354626 DOI: 10.3390/ijms25168750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
A new variant of Fisher indole synthesis involving Bronsted acid-catalyzed hydrohydrazination of unactivated terminal and internal acetylenes with arylhydrazines is reported. The use of polyphosphoric acid alone either as the reaction medium or in the presence of a co-solvent appears to provide the required balance for activating the C-C triple bond towards the nucleophilic attack of the hydrazine moiety without unrepairable reactivity loss of the latter due to competing amino group protonation. Additionally, the formal hydration of acetylenes to the corresponding ketones occurs under the same conditions, making it an alternative approach for generating carbonyl groups from alkynes.
Collapse
Affiliation(s)
- Alexander V. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia (N.A.A.); (D.A.A.)
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Ma XD, Ma FY, Jiao MM, Li JT, Duan XF. Modular and Regioselective Synthesis of Benzo-Fused Five-Membered Rings Enabled by Co/Ti Synergism. Org Lett 2024; 26:6658-6663. [PMID: 39083395 DOI: 10.1021/acs.orglett.4c02336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The regiocontrol in constructing benzo-fused five-membered rings by C-H cyclization remains an important challenge. We report a highly general and regioselective methodology to access such heterocycles and indenones, where under the catalysis of CoBr2/bipyridine, aryl titanates, alkynes and EX2 (E = NR, S(O), RP(O), R2Si, CO, etc.) were assembled to various heterocycles and indenones in a modular manner. Unprecedented 1,2-Co/Ti heterobimetallic arylene and benzotitanole intermediates have played crucial roles in these syntheses.
Collapse
Affiliation(s)
- Xiao-Di Ma
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Fang-Yuan Ma
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Miao-Miao Jiao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jun-Ting Li
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xin-Fang Duan
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Lee Y, Lee S, Lee Y, Song D, Park SH, Kim J, Namkung W, Kim I. Anticancer Evaluation of Novel Benzofuran-Indole Hybrids as Epidermal Growth Factor Receptor Inhibitors against Non-Small-Cell Lung Cancer Cells. Pharmaceuticals (Basel) 2024; 17:231. [PMID: 38399447 PMCID: PMC10893492 DOI: 10.3390/ph17020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The epidermal growth factor receptor (EGFR), also known as ErbB1 and HER1, belongs to the receptor tyrosine kinase family. EGFR serves as the primary driver in non-small-cell lung cancer (NSCLC) and is a promising therapeutic target for NSCLC. In this study, we synthesized a novel chemical library based on a benzofuran-indole hybrid scaffold and identified 8aa as a potent and selective EGFR inhibitor. Interestingly, 8aa not only showed selective anticancer effects against NSCLC cell lines, PC9, and A549, but it also showed significant inhibitory effects against the double mutant L858R/T790M EGFR, which frequently occurs in NSCLC. In addition, in PC9 and A549 cells, 8aa potently blocked the EGFR signaling pathway, cell viability, and cell migration. These findings suggest that 8aa, a benzofuran-indole hybrid derivative, is a novel EGFR inhibitor that may be a potential candidate for the treatment of NSCLC patients with EGFR mutations.
Collapse
Affiliation(s)
- Yechan Lee
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; (Y.L.); (S.L.); (Y.L.); (S.-H.P.); (J.K.)
| | - Sunhee Lee
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; (Y.L.); (S.L.); (Y.L.); (S.-H.P.); (J.K.)
| | - Younho Lee
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; (Y.L.); (S.L.); (Y.L.); (S.-H.P.); (J.K.)
| | - Doona Song
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea;
| | - So-Hyeon Park
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; (Y.L.); (S.L.); (Y.L.); (S.-H.P.); (J.K.)
| | - Jieun Kim
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; (Y.L.); (S.L.); (Y.L.); (S.-H.P.); (J.K.)
| | - Wan Namkung
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; (Y.L.); (S.L.); (Y.L.); (S.-H.P.); (J.K.)
| | - Ikyon Kim
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; (Y.L.); (S.L.); (Y.L.); (S.-H.P.); (J.K.)
| |
Collapse
|
5
|
Hou BL, Wu K, Liu R, Liu J, Wang J, Wang C, Liang Y, Wang Z. Natural products fragment-based design and synthesis of a novel pentacyclic ring system as potential MAPK inhibitor. Bioorg Med Chem Lett 2024; 99:129598. [PMID: 38169246 DOI: 10.1016/j.bmcl.2023.129598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
The synthesis of compounds based on fragments derived from natural products (NPs) serves as a source of inspiration for the design of pseudo-natural products (PNPs), to identify bioactive molecules that exhibit similar characteristics to NPs. These novel molecular scaffolds exhibit previously unexplored biological activities as well. This study reports the development and synthesis of a novel pentacyclic ring system, the indole-pyrimidine-quinoline (IPQ) scaffold. The design of this scaffold was based on the structural characteristics of four natural products, namely tryptanthrin, luotonin A, rutaecarpine, and camptothecin. Several successive steps accomplished the effective synthesis of the IPQ scaffold. The constituent components of the pentacycle, containing the indole, quinazolinone, pyrimidone, and quinoline units, possess significant biological significance. Compound 1a demonstrated noteworthy anti-tumor activity efficacy against A549 cell lines among the tested compounds. The compound 1a was observed to elicit cell cycle arrest in both the G2/M and S phases, as well as trigger apoptosis in A549 cells. These effects were attributed to its ability to modulate the activation of mitochondrial-related mitogen-activated protein kinase (MAPK) signaling pathways.
Collapse
Affiliation(s)
- Bao-Long Hou
- Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Kenan Wu
- Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Rongrong Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, China
| | - Jianli Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, China; Xi'an Peihua University, Xi'an 710125, China
| | - Jinrui Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, China
| | - Cuiling Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, China.
| | - Yanni Liang
- Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China.
| | - Zheng Wang
- Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China.
| |
Collapse
|
6
|
Kazemi Z, Rudbari HA, Moini N, Momenbeik F, Carnamucio F, Micale N. Indole-Containing Metal Complexes and Their Medicinal Applications. Molecules 2024; 29:484. [PMID: 38257397 PMCID: PMC10819683 DOI: 10.3390/molecules29020484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Indole is an important element of many natural and synthetic molecules with significant biological activity. Nonetheless, the co-presence of transitional metals in organic scaffold may represent an important factor in the development of effective medicinal agents. This review covers some of the latest and most relevant achievements in the biological and pharmacological activity of important indole-containing metal complexes in the area of drug discovery.
Collapse
Affiliation(s)
- Zahra Kazemi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran;
| | - Hadi Amiri Rudbari
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran;
| | - Nakisa Moini
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran 19938-91176, Iran;
| | - Fariborz Momenbeik
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran;
| | - Federica Carnamucio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy;
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy;
| |
Collapse
|
7
|
Singh G, Priyanka, Sushma, Sharma S, Deep Kaur J, Devi A, Gupta S, Devi S, Mohan B. Designing of efficient two-armed colorimetric and fluorescent indole appended organosilicon sensors for the detection of Al(III) ions: Implication as paper-based sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123015. [PMID: 37364410 DOI: 10.1016/j.saa.2023.123015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/28/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Metal ions have significant roles in diagnosis, industry, human health, and the environment. To design and develop new lucid molecular receptors for the selective detection of metal ions is important for environmental and medical applications. In the present work, two-armed indole appended Schiff bases conjoined with 1,2,3-Triazole bis-organosilane and bis-organosilatrane skelton sensors for naked eye colorimetric and fluorescent detection sensors for Al(III) are developed. The introduction of Al(III) in sensor 4 and 5 show red shift in UV-visible spectra, changes in fluorescence spectra and immediate color change from colorless to dark yellow. Furthermore, the pH and time response studies were explored for both sensors 4 & 5. The sensors 4 and 5 exhibited significantly low detection limit (LOD) in nano-molar range 1.41 × 10-9 M and 0.17 × 10-9 M respectively from emission titration. The LOD form absorption titration was found to be 0.6 × 10-7 M for sensor 4 and 0.22 × 10-7 M for sensor 5. In addition, the sensing model is developed as paper based sensor for its practical applicability. The theoretical calculations were performed on Gaussian 03 program by relaxing the structures using Density functional theory.
Collapse
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India.
| | - Priyanka
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India.
| | - Sushma
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India
| | - Sanjay Sharma
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India
| | - Jashan Deep Kaur
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India
| | - Anita Devi
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India
| | - Sofia Gupta
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India
| | - Swati Devi
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India
| | - Brij Mohan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
8
|
Pazur EJ, Tasker NR, Wipf P. C3-Functionalization of indoles with α-heteroaryl-substituted methyl alcohols. Org Biomol Chem 2023; 21:8651-8657. [PMID: 37873703 DOI: 10.1039/d3ob01432k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The transition metal-free Cs2CO3/Oxone®-mediated C3-alkylation of indoles proceeds in moderate to high yields with a variety of C4-C7 functionalized indoles and is applicable to 2-, 3- and 4-hydroxymethyl pyridines and related electron-deficient heterocycles, permitting novel late-stage drug functionalizations. Preliminary mechanistic studies support a hydrogen autotransfer-type chain process starting with an initial oxidation of the alcohol to the corresponding aldehyde, followed by a subsequent condensation onto indole and reduction/hydride delivery from another equivalent of the primary alcohol.
Collapse
Affiliation(s)
- Ethan J Pazur
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Nikhil R Tasker
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
9
|
Verma K, Mishra M, Maharana PK, Bhattacharyya H, Saha S, Punniyamurthy T. Sc(OTf) 3-Catalyzed Domino C-C/C-N Bond Formation of Aziridines with Quinones via Radical Pathway. Org Lett 2023; 25:7933-7938. [PMID: 37874042 DOI: 10.1021/acs.orglett.3c03318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Sc(III)-catalyzed domino C-C and C-N bond formation of N-sulfonyl aziridines with quinones has been accomplished to furnish functionalized indolines at a moderate temperature. The umpolung reactivity of aziridines, radical pathway, mild reaction conditions, substrate scope, and coupling of drug molecules in a postsynthetic application are the important practical features.
Collapse
Affiliation(s)
- Kshitiz Verma
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Manmath Mishra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Prabhat Kumar Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Hemanga Bhattacharyya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sharajit Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | | |
Collapse
|
10
|
Jacob IT, da Cruz Filho IJ, Alves JEF, de Melo Souza F, de Azevedo RDS, Marques DSC, de Lima Souza TRC, Dos Santos KL, da Rocha Pitta MG, de Melo Rêgo MJB, Oliveira JF, Almeida SMV, do Carmo Alves de Lima M. Interaction study with DNA/HSA, anti-topoisomerase IIα, cytotoxicity and in vitro antiproliferative evaluations and molecular docking of indole-thiosemicarbazone compounds. Int J Biol Macromol 2023; 234:123606. [PMID: 36773880 DOI: 10.1016/j.ijbiomac.2023.123606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/20/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
In this work we will discuss the antiproliferative evaluation and the possible mechanisms of action of indole-thiosemicarbazone compounds LTs with anti-inflammatory activity, previously described in the literature. In this perspective, some analyzes were carried out, such as the study of binding to human serum albumin (HSA) and to biological targets: DNA and human topoisomerase IIα (topo). Antiproliferative study was performed with DU-145, Jukart, MCF-7 and T-47D tumor lines and J774A.1, besides HepG2 macrophages and hemolytic activity. In the HSA interaction tests, the highest binding constant was 3.70 × 106 M-1, referring to LT89 and in the fluorescence, most compounds, except for LT76 and LT87, promoted fluorescent suppression with the largest Stern-Volmer constant for the LT88 3.55 × 104. In the antiproliferative assay with DU-145 and Jurkat strains, compounds LT76 (0.98 ± 0.10/1.23 ± 0.32 μM), LT77 (0.94 ± 0.05/1.18 ± 0.08 μM) and LT87 (0.94 ± 0.12/0.84 ± 0.09 μM) stood out, due to their IC50 values mentioned above. With the MCF-7 and T-47D cell lines, the lowest IC50 was presented by LT81 with values of 0.74 ± 0.12 μM and 0.68 ± 0.10 μM, respectively, followed by the compounds LT76 and LT87. As well as the positive control amsacrine, the compounds LT76, LT81 and LT87 were able to inhibit the enzymatic action of human Topoisomerase IIα.
Collapse
Affiliation(s)
- Iris Trindade Jacob
- Department of Antibiotics, Federal University of Pernambuco, 50670-901, Brazil
| | | | | | - Felipe de Melo Souza
- Universidade de Pernambuco (UPE), Multicampi Garanhuns, Garanhuns, PE 55290-000, Brazil
| | | | | | | | | | | | | | - Jamerson Ferreira Oliveira
- University for the International Integration of Afro-Brazilian Lusophony (UNILAB), 62790-970 Redenção, CE, Brazil
| | - Sinara Mônica Vitalino Almeida
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, 50670-901, Brazil; Universidade de Pernambuco (UPE), Multicampi Garanhuns, Garanhuns, PE 55290-000, Brazil.
| | | |
Collapse
|
11
|
Sundaramoorthy R, Vadivelu M, Karthikeyan K, Praveen C. Mechanosynthesis of Triazolyl-bis(indolyl)methane Pharmacophores via Gold Catalysis: A Prelude to Their Molecular Electronic Properties and Biological Potency. ChemMedChem 2023; 18:e202200529. [PMID: 36529707 DOI: 10.1002/cmdc.202200529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/26/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
Chemical structures possessing both 1,2,3-triazole and bis(indolyl)methane fragments gained considerable interest in drug synthesis owing to their established biological efficacies. However, 1,2,3-triazoles linked at the bridging position of bis(indolyl)methane is a logical and unexplored design approach. In this regard, nine new triazolyl-bis(indolyl)methane conjugates under AuCl catalyzed ball-milling conditions were accomplished. Comparative evaluation on absorptive and emissive properties of the synthesized dyads were also analyzed. To unravel the influence of different peripheral substituents on the electronic structure and π-orbital properties, theoretical investigations were performed. Screening of molecules for free radical scavenging, anti-inflammatory and antidiabetic showed comparable potency against reference drugs. In particular, compounds 7 h, 7 d and 7 a displayed good efficiency of α-amylase inhibition. The DNA gyrase inhibitory potential of all compounds were assessed in silico which revealed high binding affinity (ΔG=-8.99 Kcal/mol) for 7 i followed by 7 h (ΔG=-7.80 Kcal/mol) with the targeted protein.
Collapse
Affiliation(s)
- Ramachandran Sundaramoorthy
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, Tamil Nadu, India
| | - Murugan Vadivelu
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, Tamil Nadu, India
| | - Kesavan Karthikeyan
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, Tamil Nadu, India
| | - Chandrasekar Praveen
- Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, Tamil Nadu, India
| |
Collapse
|
12
|
Li R, Heuer J, Kuckhoff T, Landfester K, Ferguson CTJ. pH-Triggered Recovery of Organic Polymer Photocatalytic Particles for the Production of High Value Compounds and Enhanced Recyclability. Angew Chem Int Ed Engl 2023; 62:e202217652. [PMID: 36749562 DOI: 10.1002/anie.202217652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 02/08/2023]
Abstract
Pseudo-homogeneous polymeric photocatalysts are an emerging class of highly efficient and tunable photocatalytic materials, where the photocatalytic centers are easily accessible. The creation of highly efficient photocatalytic materials that can be rapidly separated and recovered is one of the critical challenges in photocatalytic chemistry. Here, we describe pH-responsive photocatalytic nanoparticles that are active and well-dispersed under acidic conditions but aggregate instantly upon elevation of pH, enabling easy recovery. These responsive photocatalytic polymers can be used in various photocatalytic transformations, including CrVI reduction and photoredox alkylation of indole derivative. Notably, the cationic nature of the photocatalyst accelerates reaction rate of an anionic substrate compared to uncharged species. These photocatalytic particles could be readily recycled allowing multiple successive photocatalytic reactions with no clear loss in activity.
Collapse
Affiliation(s)
- Rong Li
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Julian Heuer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Thomas Kuckhoff
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Calum T J Ferguson
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
13
|
Yokoe H, Kiriyama A, Shimoda M, Nakajima S, Hashizume Y, Endo Y, Iwamoto R, Tsubuki M, Kanoh N. Cis-Selective Double Spirocyclization via Dearomatization and Isomerization under Thermodynamic Control. J Org Chem 2023; 88:1803-1814. [PMID: 36632764 DOI: 10.1021/acs.joc.2c02225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Spiro compounds have been considered key scaffolds for pharmaceutical applications. Although many synthetic methods exist for monospirocycles, fewer approaches are known for dispirocycles. Here, we report a highly cis-selective method for constructing a 5/6/5-dispirocyclic structure containing pyrrolidine and γ-lactam rings with various substituents from a series of N-arylpropiolamides. The high cis-selectivity would result from isomerization under thermodynamic control. Cis- and trans-diastereomers can be in equilibrium, favoring cis-adducts.
Collapse
Affiliation(s)
- Hiromasa Yokoe
- School of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Akiko Kiriyama
- School of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Miho Shimoda
- School of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Satoru Nakajima
- School of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yuna Hashizume
- School of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yuto Endo
- School of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Ryoko Iwamoto
- School of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Masayoshi Tsubuki
- School of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Naoki Kanoh
- School of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
14
|
Guo Q, Deng WF, Xiao JL, Shi PC, Lan LJ, Zhou ZX, Ji C. Synthesis, single crystal X-ray analysis and vibrational spectral studies of 3,4-di(1H-indol-3-yl)-1H-pyrrole-2,5-dione. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
15
|
Zhao J, Carbone J, Farruggia G, Janecka A, Gentilucci L, Calonghi N. Synthesis and Antiproliferative Activity against Cancer Cells of Indole-Aryl-Amide Derivatives. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010265. [PMID: 36615458 PMCID: PMC9822155 DOI: 10.3390/molecules28010265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Indoles constitute a large family of heterocyclic compounds widely occurring in nature which are present in a number of bioactive natural and synthetic compounds, including anticancer agents or atypical opioid agonists. As a result, exponential increases in the development of novel methods for the synthesis of indole-containing compounds have been reported in the literature. A series of indole-aryl amide derivatives 1-7 containing tryptamine or an indolylacetic acid nucleus were designed, synthesized, and evaluated as opioid ligands. These new indole derivatives showed negligible to very low affinity for μ- and δ-opioid receptor (OR). On the other hand, compounds 2, 5 and 7 showed Ki values in the low μM range for κ-OR. Since indoles are well known for their anticancer potential, their effect against a panel of tumor cell lines was tested. The target compounds were evaluated for their in vitro cytotoxicity in HT29, HeLa, IGROV-1, MCF7, PC-3, and Jurkat J6 cells. Some of the synthesized compounds showed good activity against the selected tumor cell lines, with the exception of IGROV1. In particular, compound 5 showed a noteworthy selectivity towards HT29 cells, a malignant colonic cell line, without affecting healthy human intestinal cells. Further studies revealed that 5 caused the cell cycle arrest in the G1 phase and promoted apoptosis in HT29 cells.
Collapse
Affiliation(s)
- Junwei Zhao
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Jacopo Carbone
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Luca Gentilucci
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Correspondence: (L.G.); (N.C.); Tel.: +39-05-1209-9570 (L.G.); +39-05-1209-1231 (N.C.)
| | - Natalia Calonghi
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
- Correspondence: (L.G.); (N.C.); Tel.: +39-05-1209-9570 (L.G.); +39-05-1209-1231 (N.C.)
| |
Collapse
|
16
|
Yaragorla S, Arun D. Arylation and Aryne Insertion into C-Acylimines: A Simple, Flexible, and Divergent Synthesis of C2-Aryl Indoles. J Org Chem 2022; 87:14250-14263. [PMID: 36219251 DOI: 10.1021/acs.joc.2c01753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We reveal a direct strategy for the flexible synthesis of C2-aryl/heteroaryl indoles without transition metal catalysts. The synthesis involves a one-pot, four-component reaction of readily available starting materials to offer diversity around the indole moiety with a broad substrate scope and high yields. The reaction proceeds via the Friedel-Crafts C-arylation of C-acylimine formed in situ, followed by N-arylation with aryne, a formal [3+2] cycloaddition, and a subsequent aromatization cascade.
Collapse
Affiliation(s)
- Srinivasarao Yaragorla
- School of Chemistry, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Doma Arun
- School of Chemistry, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| |
Collapse
|
17
|
Mehra A, Sharma V, Verma A, Venugopal S, Mittal A, Singh G, Kaur B. Indole Derived Anticancer Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202202361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anuradha Mehra
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab 144411 India
| | - Vikas Sharma
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab 144411 India
| | - Anil Verma
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab 144411 India
| | - Sneha Venugopal
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab 144411 India
| | - Amit Mittal
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab 144411 India
| | - Gurdeep Singh
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab 144411 India
| | - Balwinder Kaur
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab 144411 India
| |
Collapse
|
18
|
Hauguel C, Pozzo J, Hamze A, Provot O. Recent Advances in Synthesis of Pyrrolo[3,2‐
b
]indole and Indolo[3,2‐
b
]indole Derivatives. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Camille Hauguel
- Université Paris-Saclay, CNRS, BioCIS 92290 Châtenay-Malabry France
| | - Jean‐Luc Pozzo
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR5255 351 cours Libération F-33405 Bordeaux France
| | - Abdallah Hamze
- Université Paris-Saclay, CNRS, BioCIS 92290 Châtenay-Malabry France
| | - Olivier Provot
- Université Paris-Saclay, CNRS, BioCIS 92290 Châtenay-Malabry France
| |
Collapse
|
19
|
3-Carbamoylmethyl-Indole-1-Carboxylic Acid Ethyl Ester. MOLBANK 2022. [DOI: 10.3390/m1324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
3-Carbamoylmethyl-Indole-1-Carboxylic Acid Ethyl Ester (an ethoxycarbonyl derivative of indole-3-acetamide) is obtained by Friedel–Crafts type cyclocondensation of γ-functionalized acetoacetamide in neat polyphosphoric acid.
Collapse
|