Kumar A, Hur W, Seong GH, Chae PS. Ratiometric orange fluorescent and colorimetric highly sensitive imidazolium-bearing naphthoquinolinedione-based probes for CN
- sensing in aqueous solutions and bio-samples.
Anal Chim Acta 2023;
1267:341376. [PMID:
37257976 DOI:
10.1016/j.aca.2023.341376]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/03/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
The widespread use of cyanide (CN-) in industry results in contamination of various effluents such as drain, lake, and tap water, an imminent danger to the environment and human health. We prepared naphthoquinolinedione (cyclized; 1-5) and anthracenedione (un-cyclized) probes (6-7) for selective detection of CN-. The addition of CN- to the probe solutions (1-5) resulted in a color change from pale green to orange under 365 nm illumination. The nucleophilic addition of CN- to C2 of the imidazolium ring of the probes is responsible for selective CN- detection. Among all probes, 1 gave the lowest fluorescence-based LOD of 0.13 pM. In contrast, the un-cyclized probes (6 and 7) were substantially inferior to the cyclized counterparts (1 and 2, respectively) for detecting a trace amount of CN-. The notably low LOD displayed by probe 1 was maintained in the detection of CN- in real food samples, human fluids, and human brain cells. This is the first report studying imidazolium-bearing naphthoquinolinedione-based probes for CN- sensing in 100% water.
Collapse