1
|
Riporto F, Dhouib A, Gheata A, Beauquis S, Molina E, Guené-Girard S, Galez C, Bornet A, Gautier-Luneau I, Gerber-Lemaire S, Monnier V, Le Dantec R, Mugnier Y. Nonclassical Nucleation and Crystallization of LiNbO 3 Nanoparticles from the Aqueous Solvothermal Alkoxide Route. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2306417. [PMID: 37968253 DOI: 10.1002/smll.202306417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/09/2023] [Indexed: 11/17/2023]
Abstract
The exact molecular reaction pathway and crystallization mechanisms of LiNbO3 nanoparticles under solvothermal conditions are derived through extensive time- and temperature-resolved experiments allowing to track all the transient molecular and solid species. Starting with a simple mixing of Li/Nb ethoxides, water addition is used to promote condensation after ligand exchange with different co-solvents including alcohols and glycols of variable carbon-chain length. A nonclassical nucleation scheme is first demonstrated after the identification of new octanuclear complexes with a {Li4 Nb4 O10 } core whose solvophobic interactions mediate their aggregation, thus, resulting in a colloidal gel at room-temperature. Upon heating, a more or less frustrated aggregation-mediated crystallization process is then evidenced leading to LiNbO3 nanocrystals of adjustable mean size between 20 and 100 nm. Such a fine control can be attributed to the variable Nb-OR (R = alkoxy/glycoxy ligand) binding interactions at the surface of crystalline intermediates. Demonstration of such a nonclassical nucleation process and crystallization mechanism for LiNbO3 not only sheds light on the entire growth process of multifunctional nanomaterials with non-perovskite crystalline structures, but also opens new avenues for the identification of novel bimetallic oxoclusters involved in the formation of several mixed oxides from the aqueous alkoxide route.
Collapse
Affiliation(s)
- Florian Riporto
- Université Savoie Mont Blanc, SYMME, Annecy, F-74000, France
| | - Ameni Dhouib
- Université Savoie Mont Blanc, SYMME, Annecy, F-74000, France
| | - Adrian Gheata
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Group for Functionalized Biomaterials, Lausanne, 1015, Switzerland
| | | | - Emilie Molina
- Université Savoie Mont Blanc, SYMME, Annecy, F-74000, France
| | - Simon Guené-Girard
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, 38000, France
| | - Christine Galez
- Université Savoie Mont Blanc, SYMME, Annecy, F-74000, France
| | - Aurélien Bornet
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Nuclear Magnetic Resonance Platform, EPFL SB ISIC-NMRP, Batochime, Lausanne, 1015, Switzerland
| | | | - Sandrine Gerber-Lemaire
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Group for Functionalized Biomaterials, Lausanne, 1015, Switzerland
| | - Virginie Monnier
- Univ Lyon, Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, INL, UMR5270, Ecully, 69130, France
| | - Ronan Le Dantec
- Université Savoie Mont Blanc, SYMME, Annecy, F-74000, France
| | - Yannick Mugnier
- Université Savoie Mont Blanc, SYMME, Annecy, F-74000, France
| |
Collapse
|
2
|
Ali RF, Busche JA, Kamal S, Masiello DJ, Gates BD. Near-field enhancement of optical second harmonic generation in hybrid gold-lithium niobate nanostructures. LIGHT, SCIENCE & APPLICATIONS 2023; 12:99. [PMID: 37185262 PMCID: PMC10130160 DOI: 10.1038/s41377-023-01092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 05/17/2023]
Abstract
Nanophotonics research has focused recently on the ability of nonlinear optical processes to mediate and transform optical signals in a myriad of novel devices, including optical modulators, transducers, color filters, photodetectors, photon sources, and ultrafast optical switches. The inherent weakness of optical nonlinearities at smaller scales has, however, hindered the realization of efficient miniaturized devices, and strategies for enhancing both device efficiencies and synthesis throughput via nanoengineering remain limited. Here, we demonstrate a novel mechanism by which second harmonic generation, a prototypical nonlinear optical phenomenon, from individual lithium niobate particles can be significantly enhanced through nonradiative coupling to the localized surface plasmon resonances of embedded gold nanoparticles. A joint experimental and theoretical investigation of single mesoporous lithium niobate particles coated with a dispersed layer of ~10 nm diameter gold nanoparticles shows that a ~32-fold enhancement of second harmonic generation can be achieved without introducing finely tailored radiative nanoantennas to mediate photon transfer to or from the nonlinear material. This work highlights the limitations of current strategies for enhancing nonlinear optical phenomena and proposes a route through which a new class of subwavelength nonlinear optical platforms can be designed to maximize nonlinear efficiencies through near-field energy exchange.
Collapse
Affiliation(s)
- Rana Faryad Ali
- Department of Chemistry and 4D LABS, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Jacob A Busche
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Saeid Kamal
- Department of Chemistry and 4D LABS, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - David J Masiello
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Byron D Gates
- Department of Chemistry and 4D LABS, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
3
|
Self-assembly for hybrid biomaterial of uridine monophosphate to enhance the optical phenomena. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|