1
|
Two-photon imaging for visualizing polarity in lipid droplets during chemotherapy induced Ferroptosis. Talanta 2023; 256:124304. [PMID: 36739743 DOI: 10.1016/j.talanta.2023.124304] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/15/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
As a novel pattern of regulated cell death (RCD), Ferroptosis is induced by lipid peroxide-dependent iron accumulation, which is associated with reactive oxygen species (ROS). Ferroptosis regulates cell death via ROS accumulation-related lipid peroxides accumulation, affecting the structure and polarity of lipid droplets (LDs). Compared with reactive fluorescent probes, environment-sensitive fluorescent probes allow for maximum preservation of the intracellular environment while monitoring metabolic activity in situ, resulting in more accurate monitoring results. In this study, a polarity-sensitive two-photon fluorescent probe with anchoring capacity in LDs, LIP-Pola, is reported and applied to monitor the polarity of LDs during cell Ferroptosis by in situ imaging analysis of cell Ferroptosis via LDs polarity changes. Additionally, Paclitaxel is shown to increase the Ferroptosis level from data of cells and tumor tissue sections, suggesting that Paclitaxel may deactivate tumor cells by regulating Ferroptosis.
Collapse
|
2
|
Wang W, Chai L, Chen X, Li Z, Feng L, Hu W, Li H, Yang G. Imaging changes in the polarity of lipid droplets during NAFLD-Induced ferroptosis via a red-emitting fluorescent probe with a large Stokes shift. Biosens Bioelectron 2023; 231:115289. [PMID: 37031507 DOI: 10.1016/j.bios.2023.115289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/11/2023]
Abstract
Cell death resulting from ferroptosis is a consequence of the accumulation of lipid peroxides that are produced when lipids and reactive oxygen species (ROS) interact. This process is dependent on iron and alters the structure and polarity of lipid droplets (LDs). Unlike reactive fluorescent probes, environment-sensitive fluorescent probes can accurately monitor metabolic activities by sensing the intracellular environment of living organisms. To this end, we developed a polarity-sensitive fluorescent probe LIP-Ser that anchors to LDs and can be used to monitor changes in the polarity of LDs during ferroptosis by in situ imaging. LIP-Ser has a red-emitting (λem = 634 nm) and a large Stokes shift (Δλ = 161 nm in 1,4-dioxane), which avoids it from autofluorescence interference and crosstalk between excitation and emission spectra, thereby preventing low signal-to-noise ratio and severe fluorescence self-quenching during imaging. Additionally, LIP-Ser is used in this study to demonstrate that non-alcoholic fatty liver disease (NAFLD) promotes ferroptosis at the cellular and in vivo levels, and that inhibition of cellular ferroptosis effectively reduces the damage caused by NAFLD to cells and mouse liver tissue.
Collapse
Affiliation(s)
- Weibo Wang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Li Chai
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, 034000, PR China
| | - Xin Chen
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, 034000, PR China
| | - Zhiying Li
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, 034000, PR China
| | - Linyan Feng
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, 034000, PR China
| | - Wei Hu
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, 034000, PR China.
| | - Haibing Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.
| | - Guangfu Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
3
|
Abstract
Diabetes has become one of the most prevalent endocrine and metabolic diseases that threaten human health, and it is accompanied by serious complications. Therefore, it is vital and pressing to develop novel strategies or tools for prewarning and therapy of diabetes and its complications. Fluorescent probes have been widely applied in the detection of diabetes due to the fact of their attractive advantages. In this report, we comprehensively summarize the recent progress and development of fluorescent probes in detecting the changes in the various biomolecules in diabetes and its complications. We also discuss the design of fluorescent probes for monitoring diabetes in detail. We expect this review will provide new ideas for the development of fluorescent probes suitable for the prewarning and therapy of diabetes in future clinical transformation and application.
Collapse
|